5/2/12 1 Hückel  MO  theory:  Is  it  s3ll  useful?   Brno,  May  2012   Erich  Hückel  (09.08.1896  Berlin  -­‐  16.02.1980  Marburg)   Postdoc  with  Max  Born  in  GöNngen  and  Peter  Debye  in  Zürich  (Debye–Hückel   theory,  Habilita3on  1925)   The  HMO-­‐Model  and  its  applica3ons:  Basis  and  Manipula3on,     E.  Heilbronner  and  H.  Bock,  English  transla3on,  1976,  Verlag  Chemie   (P.  Klán  and  J.W.,  Photochemistry  of  Organic  Compounds)   •  Father  Armand  (MD)  inherited  –  decided  to  go  for  private   research  (smallpox)  in  GöNngen,  where  his  son  Erich  visited   school  and  studied  physics   •  P.  Debye,  liq.  crystals  PhD  1921  (Debye  -­‐>  ETH)   •  Ass.  D.  Hilbert,  M.  Born     •  1922:  Zürich  Debye  (electrolytes),  hab.  1925   •  1929  Leipzig  N.  Bohr  (QM  double  bond)   •  1931  hab.  Benzene  (MO  vs  VB)  [L.  Pauling  “Nature  chem.   bond:  VB,  “resonance”]  4n  +  2   •  1937  a.o.  Prof.  Marburg     •  1962  emer.   Schrödinger  equa3on   Molecular  orbitals  cannot  (adequately)   describe  many-­‐electron  systems:   P[(d1  =  1)  and  (d2  =  4)]  =  P(d1  =  1)  x  P(d2  =  4)   =  1/6  x  1/6  =  1/36       Boiling  down  QM  (HMO)   •  Only  electronic  wavefunc3on  (B–O  approxima3on)   •  Product wavefunction of MO’s (correlation) •  Consider only π-electrons (highest in energy, frozen core) •  Neglect electronic interactions altogether (!) •  HMO’s constructed as linear combinations of 2pz-AOs (LCAO: •  Treat matrix elements H as parameters •  No physics left, only topology (connectivity) as input Determina3on  of  LCAO-­‐coefficients     (e.g.,  cyclobutadiene)   5/2/12 2 HMO  of  cyclobutadiene   Pauli  principle,  Hund’s  1st  rule   The Fermi “hole”: electronic interaction as an afterthought Electronic  configura3ons   Calculate: … The “physical” basis of “bow-and-arrow” chemistry Heilbronner,  Helv.  Chim.  Acta  45,  1962,  1722.       The  complete  set  of  unexcited  VB  structures  that   can  be  wrisen  for  an  even  π-­‐electron-­‐system   containing  only  six-­‐membered  rings  and/or  linear   chains  of  orbitals,  defines  a  matrix  which  is  the   inverse  of  the  Hückel-­‐matrix  of  the  same  system   See  also:     Herndon,  Tetrahedron,  29,  1973,  3.   Dewar,  Longuet-­‐Higgins,  Proc.  Roy.  Soc,  A214,  1952,   482   “Resonance” theory Aroma3city  (4n+2)   5/2/12 3 Photoelectron  spectroscopy   Correla3on  with  HMO-­‐orbital  energies   Perturba3on  theory  for  HMO’s   π HMO  Heteroparameters   Perturba3on  of  ethylene   5/2/12 4 1st-­‐Order  perturba3on  of  degenerate  orbitals   Need to use symmetry-adapted LCMOs (any LC is equally valid) Pairing  theorems   Coulson–Rushbrooke theorems for alternant hydrocarbons (AHs) (Hold also for π-SCF calculations (PPP) Pairing  theorems   Back-­‐of-­‐envelope  NBMO’s   The NBMO coefficients* on all atoms attached to an atom with cNBMO° = 0 must add up to 0 (always choose * for the larger set): Fused  systems:  Perinaphthenyl   Perinaphthenyl anion has no excess charge in the center! Biradicals:  Singlet  or  triplet  ground  state?   Borden,  Davidson,  JACS  99,  1977,  4587   Can  the  NBMOs,  if  necessary  by  appropriate  LC,  be  confined  to   different  sets  of  atoms  (“disjoint”)?   Cyclobutadiene: disjoint (singlet GS) Trimethylenemethane: non-disjoint (triplet GS) Calculate: 5/2/12 5 Electronic  excita3ons  (π,π*)   Excited state charge distributions and bond orders Bond orders of 1,3-butadiene: Zimmermann’s meta-rule: Excited state charge distributions and bond orders p-­‐Band  of  aroma3c  hydrocarbons   Why is azulene blue? Linear  chains   x all-trans linear polyenes + polyacetylenes Blue  carrots?   • Linear carbon chains HC2nH+• (radical cations) O Linear carbon chains HC2n+1H+ (triplet ground state) ☐ symm.cyanines Me2N(CH=CH)n/2–3–CH=N+Me2 Electronic  spectra  of  ion  radicals  and  their  molecular  orbital   interpreta;on.  III.  Aroma;c  hydrocarbons   T.Shida,  J.  Am.  Chem.  Soc.,  1973,  95,  3473   5/2/12 6 Radical  ions  of  alternant  HCs   Nonalternant  HC   Transi3on  moments  and  their  direc3ons   Mel = er1,2/2 Transition moments can be determined using linearly polarized light and oriented molecules (photoselection, stretched polymer sheets, doped crystals). The  benzene  catastrophe   Neglect of electronic correlation and symmetry Naphthalene   Cycl[3.3.3]azine   5/2/12 7 Aza-­‐subs3tuted  cyl[3.3.3]azines   PMO  theory  (Dewar)   If there are several ways to divide AHs into two odd AHs, then the one that gives the smallest interaction is best. “Mirror image of GS” General rules for excited state reactivity are often opposite to those of ground state reactivity •  Woodward–Hoffmann; Zimmerman’s meta-rule •  PMO (Dougherty, JACS 1971, 93, 7187) The photoproduct is often less stable than the starting material Conclusions Hückel theory has helped me enormously to • understand and predict trends • interpret electronic spectra • interpret the output of “black-box” ab initio calculations • provide general principals and guidelines I hope this lecture has increased your awareness of the merits of the HMO model. The HMO model rectifies some problems of resonance theory (cyclobutadiene) and, in contrast to resonance theory, it is useful to consider electronic structures and reactivities of excited states.