Definition
{N(2), 1=0} is a simple Poisson process with intensity or
mean rate A if;

(&) N(O) =0;

(b) givenany O =¢ <t <t,< .-+ <t,_, <{, the random vari-
ables N(1,) = N(z,_,), k=1.2,..., n, are mutually indepen-
dent; and

(c) for any 0 <7, <t,, N(z,)— N(t,) is a Poisson random vari-
able with probability distribution

(A(t,~ :vv»mxvﬁlwfm -14))
k!
k=0,1,2,.... (9.26)

s

Pr{N(1,) ~ N(1) =k} =

Property (a) is just a starting condition. Property (b) puts the
Poisson process in the class of processes with independent increments.
Property (c) tells us that the increments are starionary (since only time
differences matter) with Poisson distributions. The meaning of A will
become clear shortly.

From (9.26) with #, =0 and ¢, =1, we sce that N(¢) is a Poisson
random variable with mean and variance equal to Az, Also, with =t
and ¢, =1+ Az, we find

(N A2) exp(—A Ar)
k!

Pr{N(t+ A1) - N(t)=k}=

1-AAt+o(Ar), k=0,

={AAr+0(Ar), k=1,
o(Ar), k>2,
(9.27)

where o(Az) means terms that, as At — 0, approach zero faster than
At itself. Hence, in very small time intervals, the process is most likely
to stay unchanged (k = 0) or undergo a step increase of unity (k= 1).
The value of N(r) will be the number of unit step changes that have
occurred in (0, 7). A typical realization (sample path, trajectory) of the
process will appear as sketched in Figure 9.7A.

In Figure 9.7B we have inserted a cross on the r-axis at the times
when N(#) jumps by unity. Each cross may be associated with the
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Emﬂ.h.m 9.7. A-Realization of a Poisson process. B- Associated
realization of the Poisson point process. C— Hypothetical spike train.
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occurrence of a certain kind of event such as a postsynaptic potential
or an action potential. The crosses (points) form a realization of a
Poisson point process and N( #) thus records or counts the number of
events in (0, /]. Figure 9.7C shows a hypothetical spike train, which
can be associated with the point process.

The waiting time to an event

Consider any 5> 0 and let T, be the time to the first event
occurring after 5. Then we find that T, is exponentially distributed with
mean 1/\.

Proof. The probability that one has to wait longer than ¢ for the first
event is the probability that there are no events in (s,s+1¢t]. Thus

Pr{Ty>1} =Pr{N(s+1) =N(s) =0} =™, >0,
(9.28)
Thus the distribution function of T is 1—e™ and hence the
probability density function p, of T, is
p(t)=Xe™, >0, (9.29)

as required. Since s was completely arbitrary, it could have coincided
with the time of an event. It may be shown, in fact, that the time
interval between events is exponentially distributed with mean 1 /A. Since
the average waiting time between events is 1 /A, there are, roughly
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Figure 9.8. Histogram of time intervals between m.e.p.p.’s at the
frog neuromuscular junction. [From Fatt and Katz (1952). Repro-
duced with the permission of The Physiological Society and the

authors.]

speaking, on average A events per unit time. Thus A is called the mean
rate or intensity.

Figure 9.8 shows the histogram, obtained by Fatt and Katz (1952),
of time intervals between the spontaneous miniature endplate poten-
tials at the frog neuromuscular junction. The histogram has the shape
of an exponential distribution. Fatt and Katz were thus led to make
their Poisson hypothesis, that the arrival times of the m.e.p.p.’s con-
stituted a Poisson point process [see Van de Kloot, Kita, and Cohen
1975)].

The Poisson process as a primitive model for nerve-cell activity

Let the depolarization of a nerve cell be {¥(f), 1= 0}.
Suppose that excitatory inputs occur at random in accordance with
events in a simple Poisson process { N(¢), ¢ >0} with mean rate A.
Each excitatory input causes I to increase by @,. When ¥ reaches or
exceeds the constant threshold level 6> 0, the cell emits an action
potential. Then

V(t)=agN(t), V<8, ¥(0)=0. (9.30)
In this primitive nerve-cell model, what is the probability distribution
of the time interval between action potentials?

To answer this we first ask what is the waiting time T, until the k& th

event in a simple Poisson process after the arbitrary time point 5. We
will show that T} has a gamma density with parameters k and \.

Proof. The kth event will occur in (s + ¢, 5 + ¢+ Ar] if and only if
there are k — 1 events in (s, s + ¢] and one event in (s + 1,5+ ¢ + Atr].

It follows that

eM(A)* TN Ar

Pr{T, & (1,1 +Ar]} = (e—1)t

+o(As), k=1,2,.
(9.31)
Hence the density of 7, is

AN

sy e (9.32)

p{e) =

as required.

Hence we find that the waiting time for the kth event has a gamma
density with paramerers k and A. Thus T, has mean k/A and variance
k/N. Some gamma densities are illustrated in Figure 9.9.

To return to the primitive nerve-cell model, an action potential is
emitted when V' reaches or exceeds 0, or, equivalently, when N
reaches or exceeds 6/ay. Letting [x] denote the largest integer less
than x we find that 1+ [6/a,] excitatory inputs are required. Hence
the time interval between action potentials has a gamma density with
parameters 1 +[8/a;] and A. The mean time interval between action
potentials is (1 + [6/az])/A.

The gamma densities, in fact, resemble the IST histograms obtained
for many nerve cells and have often been fitted to them [see, for
example, Stein (1965)]. However, the model employed to derive the
gamma densities incorporates no decay of membrane potential be-
tween excitatory inputs. Only when the cell has an exceedingly large
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Figure 9.9. Gamma densities for A =1 and &k =1, 2, and 4. [Adapted
from Cox and Miller (1965).]



time constant and the rate of incoming excitation is very fast will this
approximation be valid. Finally, we note that when §/a; is large the
gamma density becomes approximately that of a normal random
variable.

95 Poisson excitation with Poisson inhibition

We will here consider another primitive model for nerve-cell
activity in which excitation and inhibition arrive according to inde-
pendent Poisson processes. This gives what is commonly called a
birth-and-death process, which in this case Feller calls a randomized
random walk. Much of what follows is taken from Feller’s treatment
(1966). Again we ignore the decay of membrane potential between
inputs. Despite the unphysiological nature of the model, it is useful
because:

(1) the model can be analyzed completely thereby providing a
standard with which to compare other models and also real
nerve cells; and

(i) in a limiting case we obtain a Wiener process (see the next
section), which is useful in many situations.

Let ¥(1), > 0, be the depolarization at time 7. We assume that the
number of excitatory inputs in (0, ¢] is Ng(¢), where N is a Poisson
process with mean rate Az, and that the number of inhibitory inputs
is Ny(z), where &, is a Poisson process with mean rate X, Bach
excitatory input makes ¥ jump up by unity, whereas each inhibitory
input causes ¥ to jump down by unity. Thus

V(1) = Np(2) = Ny (¢),

The first thing we find is the probability distribution of ¥(¢) when
there is no threshold for action potentials.

Consider what may happen in (, ¢+ Az]. A jump in Ny oceurs with
probability A Af+o0(Ar), a jump in N, occurs with probability
ApAf+ o(Atr), and with probabilities 1 — Az At + o(As) and 1 — A At
+ o(At), respectively, N, and N, remain unchanged. The probability
of a jump of either kind in V" in (¢, # + A¢] is thus (Ag+ A At +o(AD)
and the probability of no jump is (1 — A Ar+ o(Ar))(1 — A Ar+
0(At))=1—(Ag+A;) At + o(Ar). The times at which V changes are
thus a Poisson point process with mean rate A=A, +A,. In fact, if
we let N(7) be the number of jumps (of either kind) of ¥ in (0, t],
then

V(0)=0,¥<#, (9.33)

N(2) =Ng(r) + Ny(1), (9.34)

and { N(r), >0} is a Poisson process with mean rate A. From the
definition of conditional probability we find

Pr(V jumps by +1in (7,7 + Az]| a jump in ¥ occurs in (2, £+ At])

=Ag/A=p, (9.35)
Pr(¥ jumps by —1in (2, ¢+ Ar]| a jump in ¥ occurs in (r,1+4])
=A /A% (9.36)
and p+g=1.
We seek

Pn(8) =Pr{¥V(z) = m|V(0) =0}, m=0,+1,%2,...,
(9.37)
which is the conditional probability that ¥(s) = m for an initial value
zero. Such a quantity is an example of a transition probability, which
we associate with a class of processes called Markov to which the
process I belongs. We will for convenience drop the reference to the
initial state and consider m > 0.

Let the process I be at m at ¢ and suppose that n > m jumps have

occurred, of which #; were +1 and n, were —1. Then we must have

n=n;+n,, (9.384)

m=n;—n,, (9.38B)
and hence

= (m+n)/2, (9.38C)

n=m+2n,. (9.38D)

The probability that V(¢) = m if n jumps have occurred in (0, ¢] is the
probability that a binomial random variable with parameters » and b4
takes the value n,. That is,

Pr{¥(¢) = m|n jumpsin (0,]}
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(9.39)
By the law of total probability,
Wl V()= 3\; = M ﬂm,:\?v =m|n jumpsin (0,]}

n=m

XPr{n jumpsin (0,2]}. (9.40)



Since n jumps in (0, ¢] has probability e=*'(A)"/n!, we find

o n
puly=e 55 OV n¥m | myoomnn, (0.
n=m M 2

where the prime on the summation sign indicates that summation is
over either even or odd » depending on whether m is even or odd,
respectively.

Utilizing (9.38) and the fact that n=m, m+2, m+4,... implies
n,=0,1,2,..., this becomes

Lo el 2 AS+M=N

7= L5 e
Pult)=e :»quS.TM:Nv_ mn,

vﬁafrxNQ:N. Awbwv
In terms of the modified Bessel function,

S H x&in
L{x)= WOIEETE.SAMV ; (9.43)

we get

A] 4

2
p..(t) = 3, m;@sﬁwiv,mfv‘

9.5.1 Time of first passage to threshold

We assume that there is a fixed threshold 6, which when
reached by V leads to the emission of an action potential. The
threshold condition is an imposed one and after a spike the potential
is artificially reset to zero, possibly after a dead time or refractory
period. Passage to time-varying thresholds in this model does not
seem to have been considered.

We let @ be a positive integer and seek the time of first passage of V
to @, which is identified with the interspike interval. To find the
probability distribution of the first-passage time, we employ the
method of images in the symmetric case (Ag=A;) and the renewal
equation in the asymmetric case.

(A) Symmetric case: method of images

We will first find p*(¢), the probability that the randomized
random walk is at level m at ¢ but has stayed below 6 up to time .
This is in distinction to p,,(¢), which includes passages below, to, and
above 8. Consider Figure 9.10, where a randomized walk process U is
shown starting from the image point 26 and having the value m at r.
There is a one-to-one correspondence between such paths of U and

28 s

Figure 9.10. Paths considered in the method of images.

those of I that start at 0, touch and /or cross the level 4 in (0, t), and
end up at m at ¢. By symmetry the probability assigned to such paths
1S Pag_,,(£). These paths are excluded in computing p* so we have

23 (8) = pol2) = P29 (1) (9.44)

To obtain the probability density fy() of the time of first passage

to level 6, note that a first passage to # occurs in (7, ¢ + Az] if 'V has

stayed below @ in (0, ¢], is, in fact, at # —1 at ¢, and a jump of +1

occurs in (¢, r + Az]. The probability of a jump of +1 in (z, ¢ + Az] is
A g Ar=(A/2) Ar. Putting these probabilities together gives

£o(8) Be=pi L ()(A/2) Ar. (9.45)
Utilizing (9.43) and (9.44) and the fact that A=A, we find
A
fi(t) = meftmlﬁwym& =11 (20 50)], t>0. (9.46)

A more succinct expression results on using the recurrence relation for
the modified Bessel function,

I a(x) = Zga(x) = (26/x) Iy (x), (9.47)
whereupon
fo(£)=(8/1)e ™27 51), 1>0. (9.48)

(B) General case: the renewal equation

When the rates of arrival of jumps up and down are not
equal, we resort to another method for obtaining f,(¢). The idea on
which the method is based is illustrated in Figure 9.11. A path is
shown starting at zero and attaining the value m > 6 at ¢. Since m > 8,



Figure 9.11. Paths that lead to the renewal equation.

such a path must have at some time before ¢ passed through the level
0 and, in particular, at some time ¢’ < ¢ done this for the first time.
Integrating over all such paths gives, using a continuous version of the
law of total probability,

PulD) = [16(0) ot =) dr' (9.49)

This integral equation is called a renewal equation, which we will solve
using Laplace transform methods. Note that the probability of a
transition from 6 at #' to m at s is the same as the probability of a
transition from 0 at time zero to m — @ at ¢ — ¢’ (spatial and temporal
homogeneity).

Equation (9.49) is a convolution of fy and p,,_,. From Table 3.2 we
see that the Laplace transform of the convolution of two functions is
the product of their Laplace transforms. Thus, denoting Laplace
transforms by the extra subscript L,

Pmi(8) =fo, () Py gi(s),  m<@, (9.50}
where s is the transform variable. Rearranging this gives the following
useful relation:

\Fn?vUwshmuv\mi\a_nfv. (9.51)
The transforms on the right can be found as series. From (9.42) and
Table 3.2, we find

m+2n,
nmmﬁmymu Amvwﬂw% m F §+quvh§+5a=w
3 oo (m+2n )1y mta,
A"p™ 2 (Apg\"  m+ 2n,
- TS e

ny=0

Utilizing the property #{ef(2)} =f,(s — ¢), we find
m Apg .;AS.Tm:Nv
vﬁqm g Ah+>vm mn,
(s+2)° m Apg
2550 A.i,\/vu

\m.h?v -

Ha

m—0+2n,
m—0+n,

(9.53)

[t is left as an exercise to show that this is the Laplace transform of
the required first-passage time density,
>m 4/2 mr?ﬁr?:

i;u%ﬂ }Nliﬁ,\ﬁi, 1>0. (9.54)

Moments of the firing time

Let 7, be the (random) time taken for V to reach § from the
initial state zero (resting state). Then T, has the probability density
funetion f;. The nth moment of 7} is

B,= \081\13 dr. (9.55)

When 7 =0 we obtain the total probability mass of 7, concentrated
on (0, o0). That is,

Bo=Pr{T, < 0} u\osia d. (9.56)

A series representation of this probability can be found but it is
difficult to sum the series. However, by applying Theorem 7.1 of
Karlin and Taylor (1975) on the probability of extinction in a general
birth-and-death process, we find

Pr{Ty<oo}={[A;\* 5 (9.57)

Thus, if the mean rate of excitation is greater than or equal to the
mean rate of inhibition, the time to reach threshold is finite with
probability one. On the other hand, if the mean rate of inhibition is
greater than that of excitation, the threshold may never be reached,
which implies that the neuron may never fire an action potential.
Note, however, that this result is obtained in a model that neglects the
decay of potential between inputs.

If Ap <A, the mean firing time is infinite as 7, has some probabil-
ity mass at 7= co. When A, > A, the mean and variance of the firing



time can be found with the aid of the following relation (Gradshteyn
and Ryzhik 1965, page 708):

{oo] ht
e, (fx) dit = ——— 2 9.58
.\ﬁ.v (Bx) ,.ENIQN?TT \le_mwv ( )
This yields
g
mﬁﬂzuﬂq Ag>Xg, (9.59)
G(Az+ A
Var[T,] = £ N (9.60)
(Az—Ap)

The coefficient of variation, the standard deviation divided by the
mear, is

Agt+A, V172
2 Ap— v:v ’
which indicates that the coefficient of variation is inversely proportional
to the square root of the threshold for fixed rates of excitation and
inhibition. When A =2,, although T; < co with probability one, the
mean (and higher-order moments) of 7, is infinite.

Note that we have assumed that the excitatory and inhibitory jumps
of V are of unit size. If instead the jumps have magnitude a, so that

VAHVHQﬂZvar?oQZ, (9.62)
then with a threshold 8 > 0, not necessarily an integer, the time to get

to threshold will be the time for the process with unit jumps to reach
[1+86/a]

cviT,] = (9.61)

Tails of the firing-time density

Using the following asymptotic relation for the modified
Bessel function at large arguments (Abramowitz and Stegun 1965,
page 377),

e* (4v2-1) 1
L(x) ~ —{1-———2 4[> d
%xvxlg V27x 8x +oﬁx ’ (9.63)

we deduce that when there is Poisson excitation and inhibition,

8(A "2 1 e 1R —ye)

) ~ =l—
¢ ﬁlvooN VrN ,\ﬂﬁ)hysvﬂ\w ww\N
ol o0 1 ﬁv 9.64
—————to| |}, §
160/A.n,  \1 (0.64)

whereas when there is Poisson excitation only, we have the exact
result

Jo() =[N/ (8= 1)1]s0 e, (9.65)

Thus the density of the first-passage time to level 8 is quite different
in its tails, depending on the presence or absence of inhibition.

9.6 “The Wiener process
We will soon proceed to more realistic models, which incor-

porate the decay of membrane potential between synaptic inputs.
Before doing so, we consider an approximation to the process V¥
defined in the previous section. The approximating process is a
Wiener process (or Brownian motion), which belongs to the general
class of Markov processes called diffusion processes. These general
concepts will be explained later, Gerstein and Mandelbrot (1964)
pioneered the use of the Wiener process in neural modeling.

Diffusion processes have trajectories that are continuous functions
of ¢, in distinction to the randomized random walk whose sample
paths are discontinuous. The study of diffusion processes is often less
difficult than that of their discontinuous counterparts chiefly because
the equations describing their important properties are differential
equations about which more is known than differential-difference
equations, which arise for discontinuous processes. Among the rea-
sons for studying the Wiener process as a model for nerve membrane
potential are:

(i) it is a thoroughly studied process and many of the relevant
mathematical problems have been solved; and

(ii) from the Wiener process we may construct many other more
realistic models of nerve-cell activity.

The Wiener process as a limiting case of a random walk
Consider the process defined by

V(1) =a[Ns(2) - N,(2)]. t=0, (9.66)

where g is a constant, and Ny and N, are independent Poisson
processes with mean rates Az =X, =\. The process ¥, has jumps up
and down of magnitude a. We note that

E[V,()] =alAz=A,]z=0, (9.67)

Var[V,(1)] = a*[Var[ Ng(r)] + Var[ N,(1)]] = 2a%Az.
(9.68)






