A case study on the effects of TRICLOSAN: personal care products in the aquatic environment

Alice Hontela

University of Lethbridge
Water Institute for Sustainable Environments
(WISE)
Lethbridge, Canada

Dann and Hontela. 2011. J. Applied Toxicology 31: 285 Hontela and Habibi. 2013. Fish Physiology, Chap.3

Masaryk University, April 2013

Outline:

Triclosan

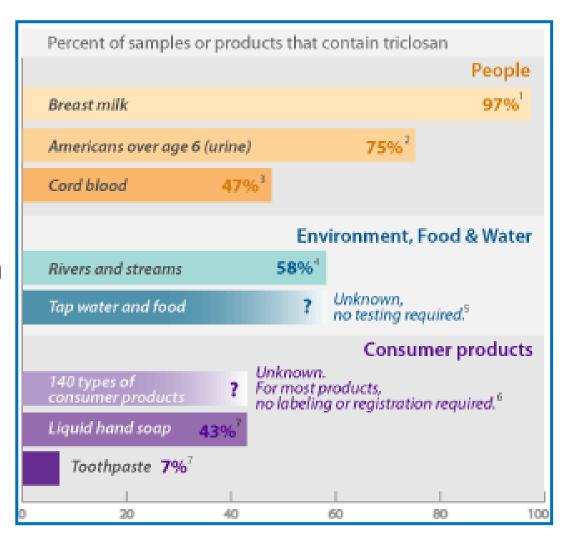
Synopsis

- 1. Chemical and physical characteristics
- 2. Sources
- 3. Exposure
- 4. Fate in the environment
- 5. Effects
- 6. Risk and Remediation

Triclosan - Synopsis (identity, use)

- Broad spectrum antimicrobial
- personal care products: Irgasan, Aquasept, ...

EU Cosmetic Directive (0.1-0.3%)


- sport clothing:

 Ultra-Fresh,
 Microban,
 Sanitized, ...
- food packaging

Triclosan – key issues

- Detected in water, human plasma, breast milk
- Bioaccumulation
- By-product formation
- Endocrine disruption
 - Thyroid hormones
 - Sex hormones
- Antibiotic resistance, efficacy

(Adolfsson-Erici et al. 2002; Queckenberg et al. 2010; Dann & Hontela, 2011)

1. Identity and mode of action

Structural similarity of TCS

to Bisphenol A, to DES to thyroxine

Antimicrobial action of TCS:
 multiple sites in bacteria,
 blocks synthesis of FFA

2. Sources

WWTP influent	In-flowing waste water	USA	2.70-26.80 μg l ⁻¹	
		Canada Germany Sweden Japan	0.01–4.01 μg l ⁻¹ 1.2 μg l ⁻¹ 0.38 μg l ⁻¹ 2.7–11.9 μg l ⁻¹	
WWTP effluent	Treated water	Switzerland Germany Canada USA	0.042–0.213 μg l ⁻¹ 0.01–0.6 μg l ⁻¹ 0.01–0.324 μg l ⁻¹ 0.03–2.7 μg l ⁻¹	
		UK Australia Sweden Japan	0.34–3.1 μg l ⁻¹ 0.023–0.434 μg l ⁻¹ 0.16 μg l ⁻¹ 0.26–0.27 μg l ⁻¹	

WWTP – Waste Water Treatment Plant

Table 1. Concentrations of triclosan (TCS) in the aquatic environment

Medium	Sample description	Location	Concentration of TCS
Surface water	Natural streams/rivers	USA	ND ^a to 2.3 μ g l ⁻¹
		Switzerland	ND to 0.074 μg l ⁻¹
		Germany	ND to 0.01 μg l ⁻¹
		Sweden	ND
		Australia Japan	0.075 μg l ⁻¹ <0.0006–0.059 μg l ⁻¹
	Streams with inputs	Switzerland	0.011–0.098 μg I ⁻¹
	of raw wastewater	USA	1.6 μg l ⁻¹
	Estuarine waters	USA	0.0075 μg l ⁻¹
Sediment	Freshwater	Switzerland	53 μg kg ⁻¹
		Spain	ND to 35.7 μ g kg ⁻¹
	Estuarine	USA	ND to 800 μ g kg ⁻¹
	Marine	Spain	0.27–130.7 μg kg ⁻¹
Sewage sludge	Activated sludge	USA	0.5–15.6 μg g ⁻¹
		Spain	$0.4-5.4 \mu g g^{-1}$
		Germany	1.2 μg g ⁻¹
	Discolida	Canada	0.62–1.45 μg g ⁻¹
	Biosolids	Australia	90–16 790 μg kg ⁻¹
		USA	10 500–30 000 μg kg ⁻¹
to experin	nental studies	Spain	1508 μg kg ⁻¹
		Canada	680–12 500 μg kg ^{–1}

3. Concentrations of Triclosan in organisms

Table 2. Concentrations of triclosan (TCS) in aquatic organisms						
Organisms	Type of sample	Site description	TCS (µg kg ⁻¹)			
Algae and invertebrates Filamentous algae (Cladophora spp.)	Whole organism Whole organism	Receiving stream for the city of Denton (TX, USA) WWTP	100–150 50–400			
Freshwater snails	Muscle		50-300			
(Helisoma trivolvis) Vertebrates	Muscle		30–300			
Rainbow trout (Oncorhynchus mykiss)	Bile	Upstream from WWTP, Sweden (caged); downstream 2 km from WWTP (caged)	710 17 000			
Breams, male (Abramis brama)	Bile	River sites (Netherlands)	14 000-80 000			
	Muscle	River sites (Germany)	0.25-3.4			
Pelagic fish	Plasma	Detroit River (USA)	0.75-10			
Atlantic bottlenose dolphins (Tursiops truncates)	Plasma	Estuary, South Carolina Estuary, Florida	0.12-0.27 0.025-0.11			
Killer whale (Orcinus orca)	Plasma	Vancouver Aquarium Marine Science Centre	9.0			
Bioaccumulation (?)						

4. Fate in the environment Degradation products of TCS

Methyltriclosan

```
biological methylation, K_{ow} = 5.2 (TCS K_{ow} = 4.7) used as marker of exposure to WWTP effluent more persistent than TCS
```

Dioxins

generated during photodegradation of TCS at pH > 8

 Chloroform and chlorophenols generated in presence of chlorine or chloramine

fate in the environment ...

Buth et al. 2009 Environ Toxicology Chem 28: 2555, 2009

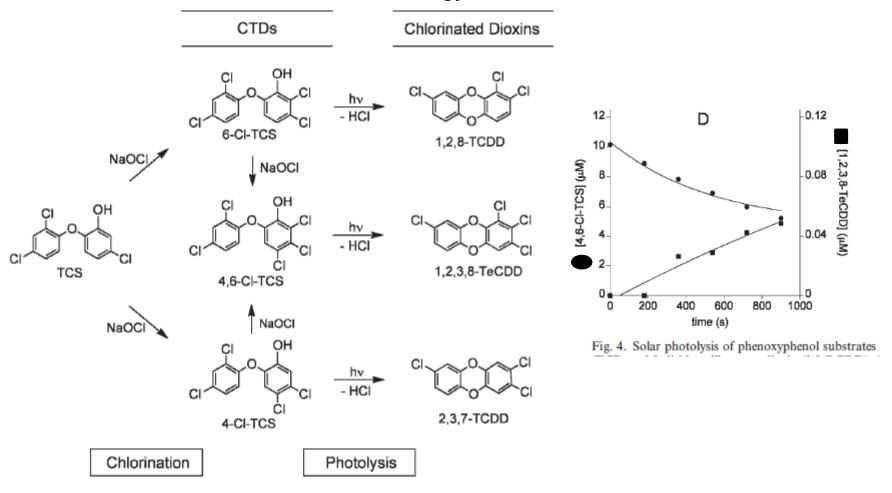


Fig. 1. Hypothesized pathway for the formation of 2,3,7-trichlorodibenzo-p-dioxin (2,3,7-TCDD), 1,2,8-trichlorodibenzo-p-dioxin (1,2,8-TCDD), and 1,2,3,8-tetrachlorodibenzo-p-dioxin (1,2,3,8-TeCDD) from the respective photolysis of 4,5-dichloro-2-(2,4-dichlorophenoxy)phenol (4-Cl-TCS), 5,6-dichloro-2-(2,4-dichlorophenoxy)phenol (6-Cl-TCS), and 4,5,6-trichloro-2-(2,4-dichlorophenoxy)phenol (4,6-Cl-TCS) formed from the chlorination of triclosan (TCS).

Biotransformation of Triclosan

catfish hepatocytes

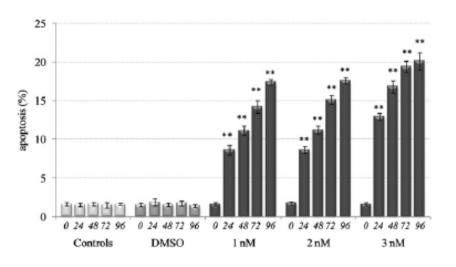
James et al. 2012 Aquat Toxicol 124: 72

5. Effects of Triclosan on aquatic organisms

Test species	Life stage	System type	Route of exposure	Test duration	TCS exposure	Endpoint
Algae						
Phytoplankton		SW	Water (static)	Acute (96 h)	3.5 μg I ⁻¹	EC ₅₀ (population density)
(Dunaliella tertiolecta)						
Green alga		FW	Water (static)	Acute (72 h)	4.7 μg I ⁻¹	EC ₅₀ (growth)
(Selenastrum capricornutum	1)	544	M/-+ (-+-+:-)	A (0.5 h)	4.4	FC (history)
Green alga		FW	Water (static)	Acute (96 h)	1.4 μg I ⁻¹	EC ₅₀ (biomass)
(Scenedesmus subspicatus) Alga (Closterium ehrenbergii)		FW	Water (static)	Acute (48 h)	620 μg Γ¹;250 μg Γ¹	EC ₅₀ genotoxicity
Blue-green alga		FW	Water (static)	Acute (96 h)	1.6 μg l ⁻¹	EC ₅₀ (biomass)
(Anabaena flos-aquae)		1.44	water (static)	Acute (90 II)	1.0 μg 1	EC50 (DIOTHASS)
Invertebrates						
Daphnia magna		FW	Water (renewal)	Acute (48 h)	390 μg I ⁻¹	EC ₅₀ NOEC reproduction
				21 days	40 μg I ⁻¹	
Ceriodaphnia dubia		FW	Water (renewal)	Acute (48 h)	240 μg l ⁻¹	EC ₅₀ NOEC reproduction
				7 days	182 μg l ⁻¹	
		FW	Water (renewal)	6–7 days	220 μg l ⁻¹	IC ₅₀ (growth)
Chironomus tentans		FW	Water (renewal)	10 days	400 μg l ⁻¹	LC ₅₀
Hyalella azteca					200 μg l ⁻¹	
Grass shrimp	Embryo	SW	Water (renewal)	Acute (96 h)	651 μg l ⁻¹	LC ₅₀
(Palaemonetes pugio)	Larvae				154 μg l ⁻¹	LC ₅₀
	Adult				305 μg l ⁻¹	LC ₅₀
Crustacean		FW	Water (static)	Acute (24 h)	470 μg l ⁻¹	LC ₅₀
(Thamnocephalus platyurus)	Homograpos	CW	la vitra	Acuta (20 min)	1	L brasamal mambrana
Bivalve (Mytilus galloprovincialis)	Hemocytes	SW	In vitro	Acute (30 min)	ι μινι	↓ lysosomal membrane stability
(Mythus gunoprovincians)	Whole anima	al SW	Injection	Acute (24 h)	2.9 ng g ⁻¹	Altered hemocyte and
	WHOIC GIIIII	ui 544	injection	Acute (24 II)	2.5 119 9	digestive gland function
Zebra mussel	Hemocytes	FW	In vitro	Acute (60 min)	0.1 µM	Genotoxicity
(Dreisena polymorpha)	-,		In vivo	Acute (96 h)	1 M	Genotoxicity
						,

Table 3. Effects of triclosan (TCS) on freshwater (FW) and marine (SW) organisms

Fish Rainbow trout (Oncorhynchus mykiss)	Adult Embryo	FW FW	Water (flow-through)	Acute (96 h) 61 days 35 days	390 μg l ^{−1} 71.3 μg l ^{−1}	LC ₅₀ Delayed swim-up; ↓ 35 dph survival; erratic swimming, locked jaw
Medaka (Oryzias latipes)	Fertilized eggs Larvae (24 h old) Male fish Fry Eggs	FW FW SW	Water (renewal) In ovo injection	14 days Acute (96 h) 21 days Acute (48 h) 14 days 1 day post- fertilization	313 μg l ⁻¹ 602 μg l ⁻¹ 20 μg l ⁻¹ 350 μg l ⁻¹ 400 μg l ⁻¹ 4.2 ng egg ⁻¹	 ↓ hatching; delayed hatching LC₅₀ ↑ liver Vtg LC₅₀ IC₅₀ (hatching) EC₅₀ (survival)
Amphibians Bullfrog (Rana catesbeiana)	Tadpoles	FW	Water	Acute (96 h)	0.15 μg l ⁻¹	↑hindlimb development, ↓ body weight, disruption of thyroid hormone- associated gene expression
Xenopus leavis	XTC-2 cells	FW	In vitro	Acute (24 h)	$0.03~\mu g~l^{-1}$	Altered thyroid hormone receptor mRNA expression
Acris crepitans blanchardii	Larvae	FW	Water	Acute (96 h)	367 µg l ^{−1}	LC ₅₀
Bufo woodhousii	Stage 30				152 μg l ^{−1}	


woodhousii

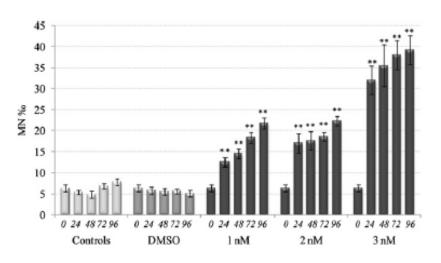
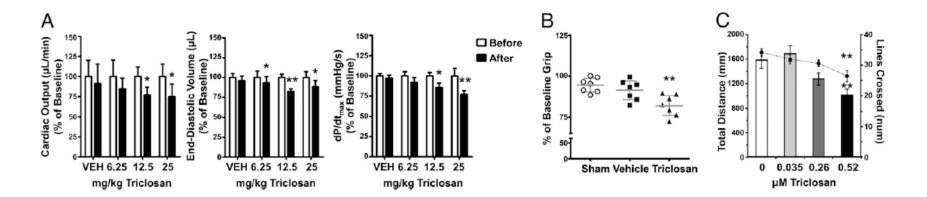
Toxicity of Triclosan

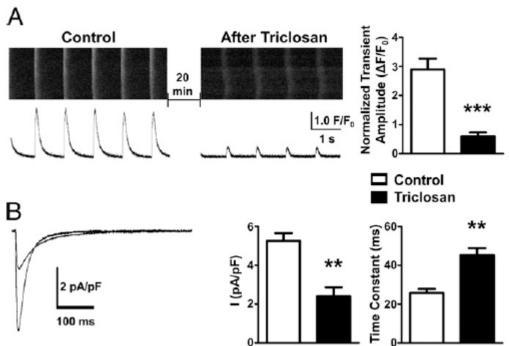
- Algae are highly sensitive to TCS LC50 96 hr = 1- 4 µg/L
- Invertebrates and fish average sensitivity

 Amphibians - highly sensitive effects in tadpoles at 0.15 µg/L effects on thyroid status

EFFECTS ...

Fig. 2. Temporal trend (h) of the means of apoptosis frequency \pm SEM calculated for Zebra mussel hemocytes for controls, solvents and treated samples with TCS. Significant values (two-way ANOVA, Bonferroni *post-hoc* test, *p* < 0.05) were obtained for the comparison between treated samples and controls at the same time.


Fig. 3. Temporal trend (h) of the means of micronuclei frequency \pm SEM calculated for Zebra mussel hemocytes for controls, solvents and treated samples with TCS. Significant values (two-way ANOVA, Bonferroni *post-hoc* test, p < 0.05) were obtained in the comparison between treated samples and controls at the same time.

Zebra mussel hemocytes

genotoxic effects of Triclosan in vitro and in vivo Micronuclei formation Appoptosis

Reduction of cardiac function in mice treated with TCS in vivo

- TCS impairs excitation-contraction coupling in isolated cardiomyocytes
- damage to Ca++ channels

Cherednichenko et al. 2012 PNAS 109:14159

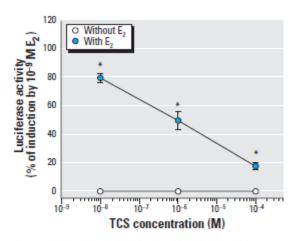


Figure 6. Activity of TCS in the ER-mediated bioassay. *Significantly different from the control.

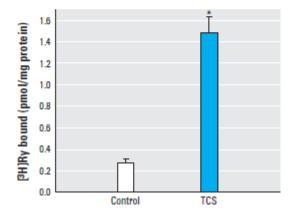


Figure 7. [3 H]Ry binding with or without 1.2 μ M TCS in skeletal muscle sarcoplasmic reticulum vesicles. *Significantly greater than the control at p < 0.05.

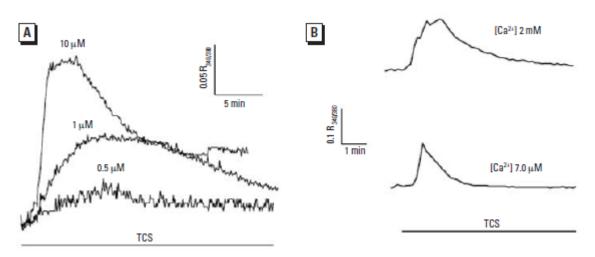
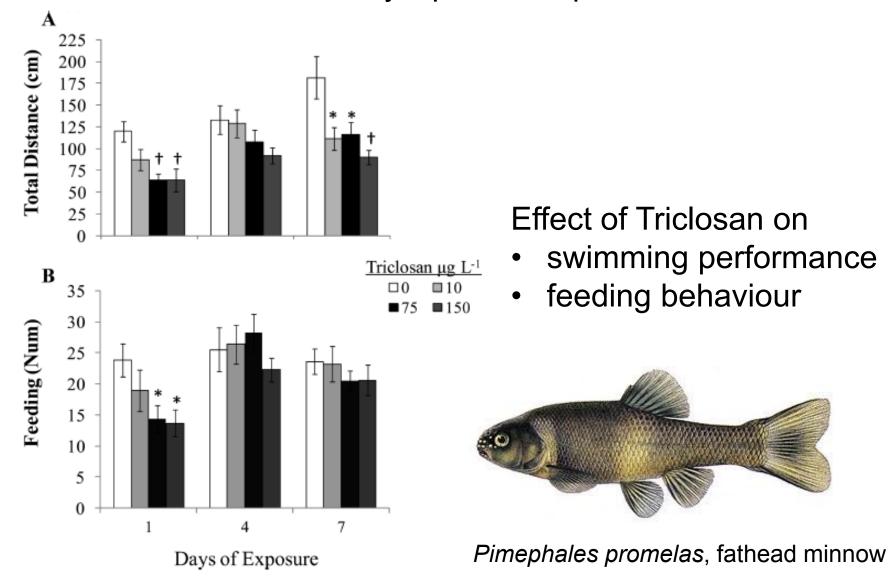



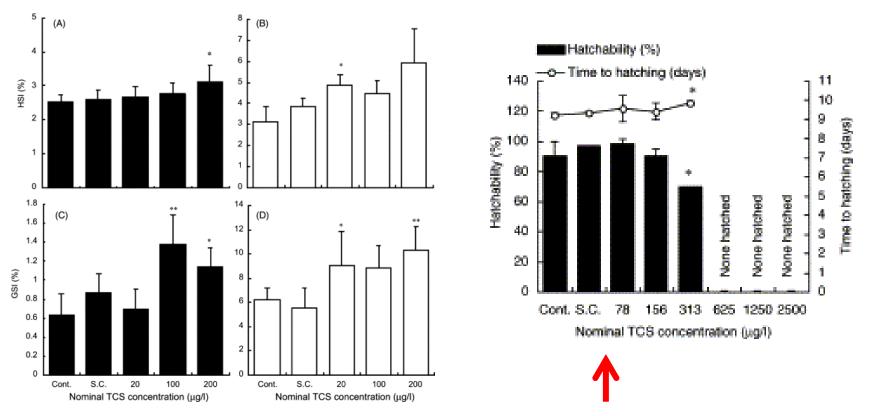
Figure 8. Effect of TCS on cytosolic Ca²⁺ concentration. (A) Cytosolic Ca²⁺ concentration in resting myotubes increased in a dose-dependent manner after TCS treatment; each trace is an average of $n \ge 5$ cells in separate cell cultures in Ca²⁺-replete (1.8 mM) buffer. (B) TCS 1 μ M triggered an increase in the cytosolic Ca²⁺ concentration even in nominally Ca²⁺-free (~ 7 μ M) extracellular buffer.

- Effects of Triclosan
 on intracellular Ca²⁺ homeostasis
 in myotubes
- Interaction with estrogen

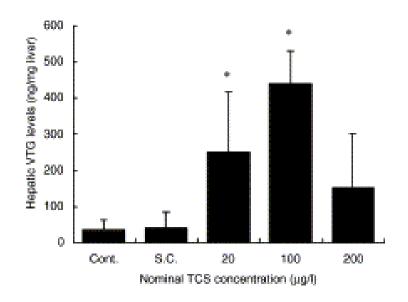
Triclosan alters DHPR and RyR protein expression in fish larvae

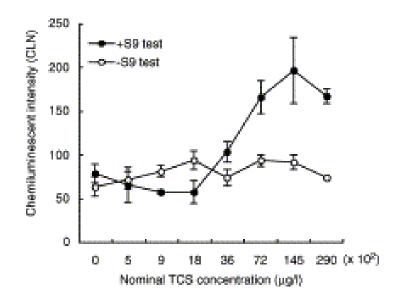
Fritsch et al 2013 Env Science and Technology

Table 4. Endocrine-disrupting effects of triclosan (TCS)


Test species/system	Life stage	Aquatic system	Route of exposure	Test duration	TCS exposure	Effects
Fish Medaka (Oryzias latipes)	Embryos	FW	Water	14 days	100 μg I ⁻¹	Weak androgenic (or anti-estrogenic)
	Male fish	FW	Water	14 days	20 μg I ^{–1}	effect (†male fin size, slight male bias sex ratio) Weak estrogenic activity; †Vtg in male fish; activity in yeast assay
Mosquitofish (Gambusia affinis)	Male fish	FW	Water	35 days	101.3 μg l ⁻¹	†vitellogenin, ↓sperm count
Bream (Abramis brama) Amphibians	Bile of male fish	FW	Field sites, Netherlands		No activity up to 0.1 mm	No estrogenic activity detected in ER-CALUX assay
North American bullfrog (Rana catesbeiana)	Tadpoles	FW	In vivo	18 days	0.15 μg I ⁻¹	Disruption of T ₃ -dependent developmental metamorphosis processes
South African clawed frog (Xenopus laevis)	Tadpoles	FW	In vivo	21 days	1.5 μg I ⁻¹ 0.6–32.4 μg I ⁻¹	↓larval growth; no effect on metamorphosis
(Actiopus lucvis)	Males	FW	Water; i.p. injection	14 days	20–200 μ g l ⁻¹ ; inject 4-400 μ g g ⁻¹ body weight	No effect on Vtg in males; no effects on CYP1A and EROD; \Vtg in i.p. injected males

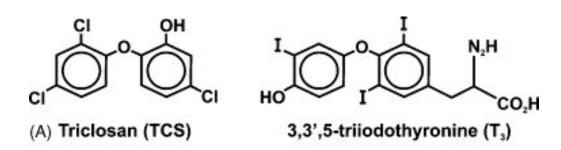
Medaka, *Oryzias latipes* Japanese killifish

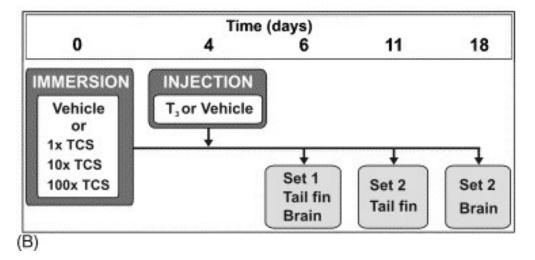

Isihibashi et al. 2004 Chemosphere


Increase in GSI in male Medaka Lower hatchability of eggs in female

Raut and Angus 2010 Env Toxicol Chem

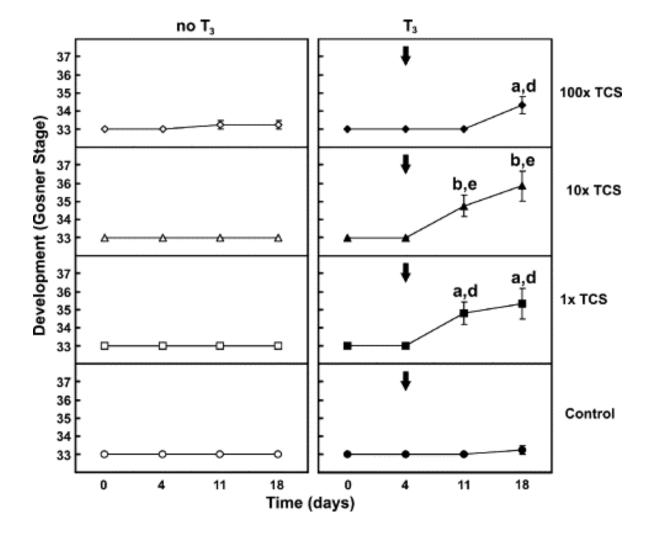
Decrease in sperm count in Mosquitofish Gambusia affinis

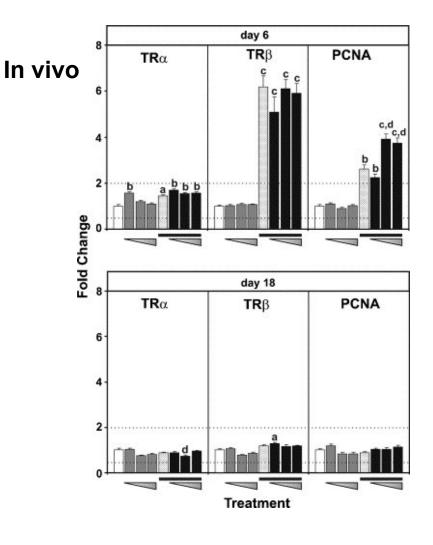



- Estrogenic effects in male medaka induction of Vtg
- Estrogenic activity of TCS enhanced by S9 activation

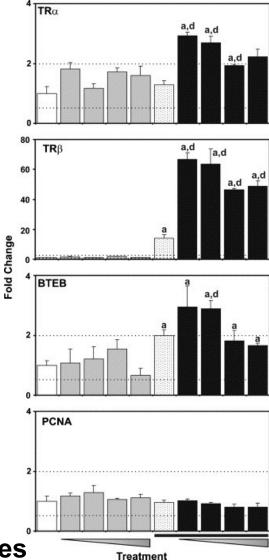
Veldhoen et al. 2006, Aquat Toxicol

Effects of Triclosan on amphibian metamorphosis Effects of Triclosan on thyroid axis

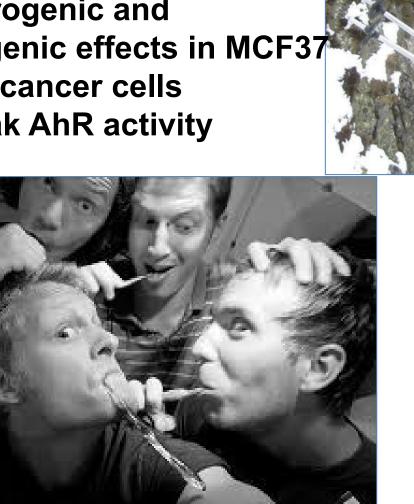

In vivo
Exposure of tadpoles
(Rana catesbeiana)



In vitro
Exposure of XTC-2 cells
(Xenopus laevis cells)



- Acceleration of development in tadpoles exposed to T3 and TCS
- T3 alone has no effect



- Relative mRNA expression of TH-regulated genes
- Transcripts levels affected by Triclosan at a sensitive life stage of anuran development
- No evidence for estrogenic effects (no VTG induction)

Effects of Triclosan in human?

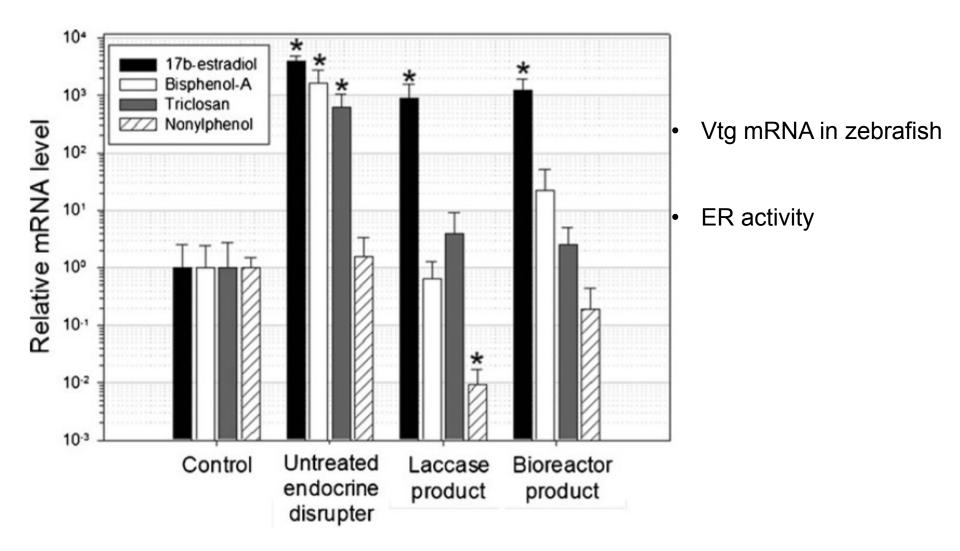
Cell -based assays

- estrogenic and androgenic effects in MCF37 breast cancer cells
- weak AhR activity

In vivo effects ???

Efficacy of Triclosan

- Use in oral hygiene +++
- Use in clinical setting as soap +++
- Use in personal care ?
- Use in food wrapping ?
- Use in sport clothing ?


Risk assessment for Triclosan

Antibacterial control hospitals oral care

Ecosystem integrity
(algal populations)
Endocrine disruption
amphibians, fish
Antibacterial
resistance

Remediation – inactivation of Triclosan by enzymatic degradation

Torres-Duarte 2012 Appl Biochem Biotechnol 168: 864

