#### Today

• CE in drug development

#### New Developments in Capillary Electrophoresis with focus on Bioanalysis

Lecture 10 Christian Nilsson

### CE in drug industry

- Liquid Chromatography dominant
- The field of LC more mature
- Limited by availability of experienced CE users

### **Preclinical stage**

- Find new compounds for group of compounds (i.e. lead compounds) with desired therapeutic effect
- Generally small amounts of each compound
- Many compounds
- Combinatorial approch of synthesis

# Passive adsorption across biological membranes

- Dissociation coefficients (pK<sub>a</sub>)
- Partitioning behavior (e.g. octanol-water partioning)
- Solubility
- Membrane permeability

### Determination of pK<sub>a</sub> by CE

- An alternative to potentiometry or UV spectrometry
- CE
  - Smaller amount of samples
  - Less sensitive to contaminations
  - Automated
  - Chromophore necessary for UV detection

### Determination of pK<sub>a</sub> by CE

• Measuring the ionic effective mobility as a function of the pH



Example of 2-aminopyridine  $(pK_a 6.7)$ 

A equilibrium equation is fitted to the data points

### Determination of pK<sub>a</sub> by CE



### Determination of pK<sub>a</sub> by CE



### Determination of pK<sub>a</sub> by CE

- High throughput measurements
- Commercially available 96 capillary instruments
- Commercially available kits
- Pressure-assisted CE to shorten the run times

### **Multiplexed CE-UV**



Low Molecular weight drug candidates of possess aromatic rings or conjugated double bond structures, which make UV detection useful

### Multiplexed CE-UV

- Compatible with 96 well plates (8\*12) at inlet side
- 96 capillaries side by side at detection window
- Can use vacuum to introduce different buffer solutions in different capillaries
- An alternative is to use multichannel microfluidic electrophoresis devices

Drug Discovery Today 2004, 9, 1072-1080

### **Multiplexed CE-UV**

| Manufacturer                                        | System               | No. of capillaries                   | Detection | Applications                                                                                                                                     |
|-----------------------------------------------------|----------------------|--------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Amersham Biosciences<br>www.amershambiosciences.com | Megabase 500         | 48                                   | LIF       | DNA sequencing, genotyping                                                                                                                       |
|                                                     | Megabase 1000        | 96                                   |           |                                                                                                                                                  |
|                                                     | Megabase 4000        | 384                                  |           |                                                                                                                                                  |
| Applied Biosystems<br>www.appliedbiosystems.com     | ABI 3730             | 48,96                                | LIF       | DNA sequencing, genotyping                                                                                                                       |
|                                                     | ABI 3730xl           | 96                                   |           |                                                                                                                                                  |
|                                                     | ABI Prism 3100       | 4,16                                 |           |                                                                                                                                                  |
| Beckman Coulter<br>www.beckman.com                  | CEQ 8800             | 8                                    | LIF       | DNA sequencing, genotyping                                                                                                                       |
|                                                     | CEQ 8000             |                                      |           |                                                                                                                                                  |
| CombiSep<br>www.combisep.com                        | CePRO 9600           | 96                                   | UV        | pK, log P, chiral, purity,<br>SDS-protein sizing,<br>DNA sizing, peptide mapping,<br>absorption amino acid analysis,<br>CIEF, oligonucleotide QC |
| Genteon<br>www.genteon.com                          | Capella 400          | 384                                  | LIF       | Genotyping, DNA sizing,<br>oligonucleotide QC                                                                                                    |
| Spectrumedix<br>www.spectrumedix.com                | SCE series           | 24,96,192,384                        | LIF       | Genetic analysis, DNA sequencing<br>DNA/protein gel shift                                                                                        |
|                                                     | <b>REVEAI</b> series |                                      |           | Mutation discovery                                                                                                                               |
|                                                     | Ident series         |                                      |           | Genotyping                                                                                                                                       |
|                                                     | HTS series           |                                      |           | Protein analysis                                                                                                                                 |
| Caliper Technologies<br>www.caliperls.com           | Caliper 3000 HTS     | 4–12 channels<br>Microfluidic device | LIF       | Enzyme assay                                                                                                                                     |

### Determination of pK<sub>a</sub> by CE-MS

- Pressure-assisted CE
- A series of 10 volatile buffers covering pH 2.5-10.5
- High throughput screening
- Higher sensitivity than CE-UV
- Can be used for non-UV-absorbing compounds

Rapid Communications in Mass Spectrometry 2003, 17, 2639-2648

### Determination of pK<sub>a</sub> by CE-MS

• Simultaneous measurement of more than 50 compounds in less than 150 min

# Determination of distribution coefficients

- Methods based on:
  - Micellar Electrokinetic Chromatography (MEKC)
    Microemulsion Electrokintetic Chromatography (MEEKC)
- · Separation based on hydrophobicity
- Compared to standard compounds of known hydrophobicity
- Separation of uncharged compounds
  - High pH for weak bases
  - Low pH for weak acids

Rapid Communications in Mass Spectrometry 2003, 17, 2639-2648

#### Microemulsion Electrokinetic Chromatography

- · Use of a microemulsion as electrolyte
  - Oil-in-water or water-in-oil microemulsion
  - Stable clear emulsion
  - Water, hydrocarbon and surfactant, co-surfactant

### Microemulsion Electrokinetic Chromatography



Electrophoresis 2013, 34, 159-177

# Comparsion between MEEKC and MEKC

- Enhanced solubilization capacity and separation of MEEKC
- Analytes can partition more effectively into the microemusion droplets compared to the more rigid micelles
  - Higher rate of mass transfer give more efficient separation

# Analysis of pharmaceutical counterions



FINOME 4 Separation of D acids used as pharmaceutical sati-forming agents, peak assignment: I. Hydrochoric 2, Nitrici, 3, Suffurici, 4, Tartaric, 5, Malic, 6, Citric, 7, Succinic, 8, Acetic, 9, Lactici, 10, Phosphate, 11, Propionic, 12, Butyric, 13, Pentanoic, 14, Hexanoic, and 15, Octanoic (taken from reference 21, With permission.).

# High throughput screening and lab on chip

- HTS to identify chemical hits against a therapeutic target to detect lead candidates
- Tradtional HTS method use radioactive or fluorescent labeling
  - Label may affect the result

### High throughput screening by CE

- Screening for enzyme inhibitor
- Enzymes common therapeutic drug targets
- L-glutamic dehydrogenase (GLDH) used as model enzyme
- Inline enzyme bioreactor in capillary column
- · GLDH immobilized on gold nanoparticles
- The gold nanoparticles was absorbed on the inner wall of the capillary at the inlet

Analytical Biochemistry 2011, 411, 88-93

### High throughput screening by CE

Method used to screen plant extracts

## High throughput screening by CE



The capillary surface is pretreated with a polyelectrolyte

The enzyme is absorbed based on ionic binding

Analytical Biochemistry 2011, 411, 88-93

Analytical Biochemistry 2011, 411, 88-93

Enzyme-GNP conjugate

### High throughput screening by CE

- Enzyme loading will be much greater if meditated by gold nanoparticles compared to in free solution
  - Enzyme enriched on GNPs that possess a high surface-to-volume ratio
- Enzyme-Nanoparticle conjugates much more stable than enzyme-polyelectrolyte conjugates
  - Thiol groups present in proteins bind to the gold nanoparticles strongly

Analytical Biochemistry 2011, 411, 88-93

#### Nanoparticle enhancement

- Examples of other application
  - Immobilization of trypsin on nanoparticles to enhance the trypsin activity
  - Immobilization of cyclodextrin on nanoparticles to enhance chiral separation

### High throughput screening by CE



### High throughput screening by CE



## Other methods for high throughput screening

- Immobilization of enzymes on silica particles that were packed into LC columns
- Enzyme bioreactors based on entrapment of enzymes in sol-gel-derived monoliths in CE
- Immobilized enzymes on magnetic nanoparticles

# Enzyme purification and characterization



Produced to recover NADH During hard work / Shortage of oxygen

# Enzyme purification and characterization

- Genetic modification to make purification easier
- Examples:
  - Modification to make target enzyme more resistant to heat
  - Attachment of Histidin tag to allow IMAC

#### **Example of enzyme purification**

- Production of enzyme in E.coli. Using a plasmid containing target enzyme (genetic modified)
- Destroy the cell membrane - Sonication or lyzosyme
- Heat treatment
- IMAC purification

#### IMAC

- Immobilized metal ion affinity chromatography
- Metals such as Cupper and Nickel have affinity for histidine
- Imidazole for elution
- Phosphorylated peptides or proteins can be used purified by e.g. Zink

#### Affinity Chromatography

- Lectins for purification of glycoproteins
- Antibodies
- Aptamers

# Enzyme purification and characterization



Spectrophotometry to determine LDH amount indirectly by measuring NAD+ concentrations

#### **CE Enzyme Assays**

- Pre-capillary enzyme assay
  - Initiation of reaction
  - Termination of reaction
  - Analysis of product(s) and or reactant(s) by CE
- In-capillary enzyme assay
  - The enzyme, reactant and product have different mobility
  - Low consumption of reactants, enzymes and cofactors

### **CE Enzyme Assays**

