Lecture Today

- Focus on analysis of protein isoforms
- Special focus on carbohydrate analysis
- Applications in
 - Pharmaceutical industry
 - Diagnostics

CE of proteins

New Developments in Capillary

Electrophoresis with focus on

Bioanalysis

Lecture 4 Christian Nilsson

- Proteins are modified after formation – Post translational modifications (PTMs)
- The proteins are modified during there lifetime
- A protein often consist of many closely related isoforms
 - Heterogeneous mixture due to differential PTMs

CE of proteins

- 2 dimensional SDS-PAGE in combination with mass spectrometry is a common tool in proteomics
- Separation techniques with high peak capacity is needed due to the huge amount of proteins.
 - High amount of proteins
 - Protein isoforms increase the complexity

2D Electrophoresis

Usually isoelectric point (IEF) and molecular weight (SDS-PAGE) is the basis of separation

Robots can be used to isolate protein spots for mass spectrometry analysis

CE of proteins

- One dimensional separation not enough for more complicated separation tasks.
- Two ortogonal techniques increase the peak capacity.

CE of proteins

- High resolution mass spectrometry important for identification of proteins.
 - High resolution MS (for example Orbitrap)
 - Identification of complex molecules (for example intact glycoproteins)
- MS can be combined with on capillary detection for quantification

Post translational modifications

- Not coded in the DNA.
- Instead the state of the cell determines how the proteins are modified
 - Presence of enzymes
 - Presence of reactants.

Post translational modification

For example:

- Phosphorylation
- Glycosylation
- Ubiquitination

Protein phosphorylation

- Regulation of kinases and phosphatases. – Regulate phosphorylation
 - Important for many signalling pathways
- Phosphorylation can activate or deactivate enzymes
- Important for regulation of the metabolism

Protein phosphorylation

Reversible step

Ubiquitination

- Important for degragration of proteins
- Important for sorting in the endosomes

Importance of PTMs

Sorting of proteins in the endosomes

Exosomes

- 40-100 nm vesicles
- Exosomes are released when multivesicular bodies fuse with the plasma membrane
- Contain
 - Proteins
 - miRNA
 - mRNA

Exosomes

- The composition is dependent of
 - Type of Cell of origin
 - State of cell of origin
- The content of the exosomes can be transported between cells
 - The content is active in the recieving cell

Glycosylation of proteins

- Significant amount of the mass of a glycoprotein
- Most abundant form of PTM
- Important for cell-cell communication

Protein glycosylation

- Alternation in glycosylation can change the biological activity of a glycoprotein
- Glycosylation of insulin might be important in diabetes

Glycosylation

Electron micrograph of a glycocalyx

Thick carbohydrate coating that surround virtually all cells. Compsed of protein- and lipid-bound oligosaccharides.

Glycosylation of proteins

- N-linked via the amines of asparagines
- O-linked via the hydroxyl group of serines and threonines
 - Blood groups O-linked glycans

Glycosylation of proteins

Glycoproteins as recombinant drugs

- Glycosylation patterns important for function
- Important to control production procedure
- Glycosylation profiles may vary based on the host system used for production
- Host system not the same cell machinery as humans.
- Analytical methods to analyze differences in glycosylation patterns

Glycoproteins as recombinant drugs

- Cell culture conditions may have a significant effect on glycosylation
- Batch-to-batch consistency

Monoclonal antibodies

SDS-CGE

- · For recombinant monoclonal antibodies
- Addition of N-linked carbohydrate chain to the heavy chain of IgG.
- Reduced fragments of IgG can be analyzed to decrease complexity

Recombinant monoclonal antibodies

- Growing industry
- High specificity makes antibodies excellent for human therapy
- Immune system to fight diseases
- Recombinant production is an alternative to production in mice

Humanized mAb

 The complementary regions, which are the responsible for antigen binding within the variable regions, have been transferred to human frameworks creating "humanized" antibodies. This is, in essence a human Ab with small segments containing mouse Ab genes.

Monoclonal antibodies

Humanize monoclonal antibodies

Applications of MABs

- Diagnostic tests
 - Detect the presence of a substance
 - Useful for detecting a antigen in tissue section
- Therapy
 - Specific binding to target cells or proteins
 - Stimulate the immune system to attack those targets.

Applications of MABs

- Treatment of cancer
 - MABs that bind to cancer cell-specific antigens and induce an immunological response against target cancer cells.
- Treatment of autoimmune diseases

Therapeutic proteins

- During production and shelf life of therapeutic proteins, several PTMs can occur:
 - for example deamidation, oxidation and proteolytic cleavages

Recombinant monoclonal antibodies

Recombinant monoclonal antibodies

CE-SDS

- SDS can also be used to evaluate heterogenity, purity and manufacturing consistency
- Linear or slightly branched polymers: polyacrylamide, polyethylene oxide, polyethylene glycol, dextran.
- Add flexibility, water soluble, replaceable after each analysis
- CE-SDS with fluorescence detection, to replace silver staining
- · However, less compatible with MS

Separation of variants of human growth hormone

Carbonhydrate analysis by CE-LIF

- Glycosylation important for function of rMABs
- Consistant glycosylation required by legislation
- Chromophore introduced to carbonhydrate
 - Also add a charge

Carbonhydrate analysis by CE-LIF

- Procedure Oligosaccharides on rMABs
 - Enzymatic removal of oligosaccharides
 - Derivatisation with APTS
 - Analyze

Carbonhydrate analysis by CE-LIF

Example of glycan analysis

Analysis of intact protein

2D separation

- CE a high-speed / high-efficiency technique
- Ideal as the last dimension in a multidimension system
- Reversed phase LC frequently coupled to CZE

 Orthogonal in separation mechanism
 - Solvents in HPLC and buffers in CE reasonable compatable.

2D-CE

- For separation of proteins and peptides
- · Can be used for studies of single cells
- Fluorescent labeling of proteins/peptides

Capillary isoelectric focusing

- High resolution/peak capacity
- Make it suitable for analysis of complex protein mixtures.
- A good option as one dimension in 2D-CE

2D separation

	2D mode	Detector	Interface	Sample
LC-CE	RPLC-CZE	MS	Valve-free hydrodynamic sampling device	Liver cancer tissue
	RPLC-MEKC	UV	Dynamic interface with pulse contact	Traditional Chinese medicine
	RPLC-CIEF	LIF	Fractionation	Yeast cell cytosol
	RPLC-chip CZE	LIF	Valve-free gating interface	BSA
	RPLC-CZE	LIF	Six-port valve interface	Ovalbumin
	SEC-CZE,	UV	Transverse flow-gated interface	Thyroglobulin, BSA, chicken egg albumin, myoglobin
	RPLC-CZE	LIF	Transverse flow-gated interface	A mixture of phenylalanine and glutamic
	RPLC-CZE-MS	ESI-MS	Transverse flow-gated interface	Glycosylated peptide mixtures
	RPLC-CZE SEC-RPLC-CZE	LIF	Optical-gated interface	Horse heart cytochrome c
	RPLC-CZE	LIF	Off-line	Cytochrome c, myoglobin
	SEC-CZE	UV	C18 trapping column	Enkephalins in cerebrospinal fluid
	CIEF-RPLC	UV	Microinjector	Soluble fraction of drosophila salivary glands
	GFC-CIEF	Column imaging	Microdialysis interface	Myoglobin, bovine serum albumin