Lecture today

New Developments in Capillary Electrophoresis with focus on Bioanalysis

Lecture 5 Christian Nilsson

• 2D-CE

- CE-MS coupling
- More CEC

Complex Samples

- Proteomics
- Diagnostics
 - Body Fluids
- Biomarker discovery
- Large difference in concentration

2D-CE

• General Setup

2D-LC/CE

- Reversed Phase LC and CE
- CE is a fast technique suitable as the second dimension
- The two techniques are orthogonal in separation mechanism
 - Hydrophobicity
 - Mass-to-charge ratio

2D-LC/CE - Examples

Figure 1. Two configurations of six-port, computer-controlled valve. C1 is RP HPLC column. P2 is pump 2. L is loop. CZE is capillary zone electrophoresis fused silica capillary. PW is paper wick. W is waste.

2D-LC/CE - Examples

Figure 2. Schematic of 2-D LC/CZE instrumentation: A and B, buffer A and acetonitrile, respectively; P1, Brownleee microgradient syringe pump; M, 52-μL mixer; V1, Valco six-port manual injection valve; S, injection syringe; L1, 50-μL loop; C1, reversed-phase column; P2, Waters Associates Model 6000A piston pump; V2, grounded six-port electrically actuated Valco valve; L2, 10-μL loop; CZE, CZE capillary; D, fluorescence detector; IB, interlock box; μA, microammeter; GB, grounding box; HV, Spellman high-voltage power supply.

2D-CE

• An alternative to 2D electrophoresis by slab gels for proteomic studies

2D-CE - Examples

2D-CE - Examples

- Protein Separation
- On Column Tryptic Digestion
- Peptide Separation
- Mass Spectrometry Detection
- Data Analysis

2D-CE

- Peptides from one protein introduced into the MS within a short time window
- Peptides not spread as if the proteins were digested prior to separation
- Fewer peptides are detected simultaneously as if digested just prior to introduction into MS.

2D-CE - Examples

- Use of magnetic nanoparticles
- Trypsin immobilized on nanoparticles
- Magnets used to hold the nanoparticles in the capillary
- Nanoparticles are replaced before each experiment
- Large surface-to-volume ratio

2D-CE - Examples

- Sufficient long time in microreactor
- Avoid band broadening
- Limited life time of certain microreactors, for example, monoliths
- Separation of peptides after digestion

2D-CE - Examples

- Short microreactor to avoid band broadening
- The peptides are introduced to the second capillary prior to MS detection
- At the same time fresh protein is introduced into the microreactor and is digested during the peptide separation

2D-CE – Examples

Capillary Interface

 Cross that was machined into a plexiglas plate

2D-CE - Examples

Second dimension – An array of capillaries

Analysis of Biofluids for Diagnostics

- Combination of techniques
 - Preconcentration
 - A combination of techniques to:
 - Separate
 - Identify
 - Quantify
- Large variation in abundance

Analysis of small proteins (below 20 kDa) and peptides in urine

- CZE coupled to ESI-MS
- High throughput
- · Excellent resolution
- · Biomarker often limited to the highly abundant substances

CE-MS

- 2 Review articles uploaded among study material
- Interface of CE with
 - Electrospray
 - MALDI
- ICP

CE-MS

- Compatibility of CE electrolyte with MS detection have to be considered
- · Avoid ion supression
- · Use of low ionic strength
- Use of acetic or formic acid
- Use of organic solvents

Coupling of CE with ESI-MS

- Sheath Liquid
- Sheathless
- Liquid Junction Interface

CE-ESI-MS Interface

- Electrical connection for adjusting spraying potential and CE outlet potential
- Transfer of the analytes to the spray
- · Continuous delivery of spray or sheath liquid

CE-ESI-MS - Sheath liquid

- The voltage is applied via a sheath liquid
- The sheath liquid is flowing outside the separation capillary and is mixing with the analytes at the spray tip

CE-ESI-MS - Sheathless interface

- Electrical contact directly via the fused silica capillary
- Lower detection limits

CE-ESI-MS – Liquid Junction

Less dilution of the analytes compared to the sheath flow techniques

CE-ESI-MS – Liquid Junction

- Narrow gap between separation and spray capillary
- The spray potential is applied to a spray liquid which is surrounding the junction
- Separation voltage is determined by the field at the inlet of the separation capillary and at the spray liquid

CE-MALDI-MS

- Off-line coupling the most common
- Separation and detection can be performed independently
- Reliable fraction collection

Applications of CE-MS

- · Proteomics and Glycomics most common
 - Analysis of intact proteins
 - Analysis of digested proteins
- · Useful for biology/cell studies
- · High throughput, High sensitivity and resolution

Applications of CE-MS

- Intact proteins
 - Characterization of protein isoforms in the biopharmaceutical industry
 - Impurities
 - Protein modification

Applications of CE-MS

- Peptides
- Biomarkers - Large differences in concentrations
- Tryptic digests of proteins

Nanoparticle-based CEC

Conventional Liquid Chromatography (LC)

- Complicated packing procedures .
- Need for retaining frits Sample matrix can modify column
- Fouling
 Reduced reproducibility

Pseudostationary phase -**Capillary electrochromatography**

- Capillary Electrochromatography
 - Electro-driven flow
 - ~50 μm column diameter
 - 10-100 nm particle diameter

Nanoparticle-based PSP-CEC

• No packing or retaining frits

· One-time use of stationary phase

- No carry over
- Minimal column regeneration
- Low consumption of nanoparticles
- Can start a new separation before the previous one finished

Small particles (sub-micron)

- High surface-to-volume ratio
- High efficiency

Continuous Full Filling

Detection

- Orthogonal ESI-MS
- Laser Induced Fluorescence (LIF)
- UV
- Other...

Dextran-coated Polymer Nanoparticles

- Hydrophobic core
- Hydrophilic surface

IEM Average Diameter 600 nm

Polymerisation

Surface modification

Orthogonal electrospray interface

Ortogonal electrospray interface

Conclusions RP-CEC

- Nanoparticles could be used for separation with an electrolyte with low acetonitrile concentration
- It was possible to use high amount of nanoparticles in continuous full filling without contamination of the mass spectrometer

Continuous full filling RP-CEC

30 kV

Electrolyte: Acetonitrile and 10 mM ammonium acetate, pH 5,6 (30:70 and 40:60 v/v)

Nanoparticle slurry: 0; 0,5 1,0; 2,0, 5,0 and 10,0 mg/ml.

Continuous full filling RP-CEC

Separation of Small Molecules

Conclusions RP-CEC

- Separation was performed with high peak numbers.
 - High concentration of acetonitrile.
 - High concentration of nanoparticles.
- Low consumption of nanoparticles
 - 10 μl nanoparticle slurry per effective hour of separation

Future improvements

- Further optimisation of acetonitrile concentration, nanoparticle concentration and pH.
- Use of other nanoparticles.
- Use of combinations of nanoparticles.
- Use of smaller nanoparticles.
- Start a new separation before last one finished

Separation of Proteins

Protein CE/CEC

- Capillary Wall Adsorption
- Solutions to the problem
 - -Buffer pH (high or low)
 - -Salt or Zwitterionic Additives
 - -Static or Dynamic Coatings
 - -Nanoparticles?

Lipid Nanoparticles

~70 nm diameter

...in bare silica capillary ...tricine, zwitterionic, low **µA** ...at neutral pH

Lipid-based liquid crystalline nanoparticles

- Average diameter 70 nm
- Bicontinuous Cubic Phase
- Porous (100 Å)
- Protein compatible
- Membrane proteins
- Drug delivery
- Easy to prepare
 - One-step procedure

Green fluorescent protein (GFP) Mutants

26 kDa 238 amino acids pl=5.7

Separation of Proteins

Microchip electrophoresis of bacteria using lipid-based liquid crystalline nanoparticles

Zhi-Fang Wang, Shuang Cheng, Shu-Li Ge, Jin-Kun Zhu, Huan Wang, Qi-Ming Chen⁺, Qing-Jiang Wang⁺, Pin-Gang He, Yu-Zhi Fang.

Separation on polymer chip

Future of nanoparticle CEC?

- -Separation with UV detection
- Separation of membrane proteins
- Analysis of biological nanoparticles

