Four Contributions to the Resonance Frequency of Nuclei in Matter

 $\omega = \gamma B$

ALL TENSORS

1) Shielding, chemical shift electron distribution around nuclei, induced magnetic field

2) Dipolar interactions magnetic nuclei distribution, through space interactions, in solids

3) Electric field gradient distribution of nuclei (positive charge) and electrons (negative charge) quadrupolar nuclei

4) Scalar coupling dipolar interactions through electrons in molecules, bonds

Chemical Shift Information

- The presence of an element in the sample
- Number of signals = number of chemically different atoms Symmetry of the molecule
- Relative intensity = ratio of atoms integration
- Position = chemical shielding electronic environment Type of bonds, oxidation state, coordination number
- Multiplicity = connectivity of functional groups

Chemical Shift Information

The presence of an element in the sample

The three peaks of ethyl alcohol as first observed in 1951 at Stanford University.

Molecular Symmetry

Number of signals = nonequivalent nuclei, molecular symmetry

Flow chart for point group determination

Symmetry Elements and Operations

Symbol	Element	Operation	
E	Identity	Identity	No change, (= 1)
1	Center of symmetry (inversion center) POINT	Inversion	Inversion through the central point every point x,y,z translated to -x,-y,-z
C _n	Rotation axis LINE	True (proper) rotation	Rotation by an angle 360/n
σ	Plane of symmetry, mirror PLANE	Reflection	Reflection through a mirror plane
S _n	Improper axis Roto-reflection axis LINE	Improper rotation	Rotation by an angle 360/n followed by reflection through a mirror plane 7

Inversion Center

Inversion Center

9

Rotation Axis C_2

Rotation by 360/n about C_n brings the object to an indistinguishable position from the original

Rotation Axis C₃

Rotation Axis C₄

 $C_4^1 \rightarrow C_4^2 \rightarrow C_4^3 \rightarrow C_4^4 = E$

Rotation Axis C_{∞}

 $C_5, C_6, C_7, \ldots, C_{\infty}$

Linear molecules

Plane of Symmetry o

Plane of Symmetry o

Planar molecules – symmetry plane of the molecule σ_{h} = horizontal plane, perpendicular to principal axis σ_{v} = vertical plane, parallel to principal axis, bisects the most atoms σ_{d} = dihedral plane, colinear with principal axis, bisecting two C₂'

Plane of Symmetry o

Improper Axis S_n

Rotation-reflection = a compound operation, rotation (C_n) followed by a reflection through a plane perpendicular to the C_n axis

 $S_1 = C_1 \times \sigma = \sigma$

$$S_2 = C_2 \times \sigma = i$$

Improper Axis S_n

 BF_3, C_6H_6

Symmetry Elements in a Molecule

Equivalent atoms = exchanged by symmetry operations $F_4 = F_5$ $F_1 = F_2 = F_3$

Chirality

Figure 2. The Founding Fathers. R. M. Barrer (1910–1996) (right) and R. M. Milton (1920–2000) photographed

Chirality

Condition of chirality: no S_n present in a molecule

 $S_1 \equiv \sigma$ $S_2 \equiv i$

Number of signals = nonequivalent nuclei

Chemically different atoms

¹³C NMR

3 x t-Bu groups

No C_3 axis

Geometrical difference = chemical difference

Molecular Symmetry

1 x Me group signal

 C_2 axis

26

¹H NMR (600 MHz, CDCl₃, TMS): 3.25 (s, 2H, H-2' and H-6'), 1.70 (br s, 2H, H-1 and H-3), 1.57 (br s, 2H, H-5 and H-7), 1.55 (br s, 4H, H-4, 8, 9, 10), 1.45 (m, 6H, H-4, 8, 9, 10 and H-6), 1.34 (m, 4H, H-3' and H-5'), 0.96 ppm (m, 2H, H-4')

¹³C NMR (75 MHz, CDCl₃, TMS):
102.2 (C-8'=C-2),
80.8 (2C, C-2' and C-6'),
40.0 (4C, C-4, 8, 9, 10),
39.1 (C-6),
29.2 (2C, C-5 and C-7),
28.7 (2C, C-1 and C-3),
22.3 (2C, C-3' and C-5'),
20.8 (C-4'),
20.2 ppm (2C, C-1' and C-7').

¹¹B NMR

¹¹B NMR Isomers of $B_{10}H_{10}C_2H_2$

¹¹**B NMR**

Mono- and Disubstituted B₁₂H₁₂²⁻ Molecules with Identical Substituents

¹¹**B NMR**

¹¹**B NMR**

¹¹B NMR

33

Fullerenes

Icosahedron

Truncated icosahedron

 δ (¹³C) = 143 ppm

δ (¹³ C)	ppm
a	150.07
С	147.52
b	146.82
d	144.77
e	130.28

Geminal Groups

Geminal groups – paired ligands Y-E-Y: CH_2 , $C(CH_3)_2$, CF_2 , $SiMe_2$, $P(CH_3)_2$, ...

Substitution

Symmetry

Chemical Shift Nonequivalence of Geminal Ligands in Prochiral Groups

Nonequivalent (isochronous) in achiral media media Me, Me Diastereotopic Nonequivalent (anisochronous) If X is chiral, the paired ligands in a prochiral group are always diastereotoppic

Pyramidal N - Fast inversion on N

FIGURE 1 NMR spectra of CH(P) moiety of compound 2: a), b) ¹H NMR spectra in CDCl₃ and CDCl₂, D₂O respectively; c) ²¹P{¹H} NMR spectrum in CDCl₃; d) CH COSY diagram in CDCl₂.

[4] triangulane

¹H NMR spectrum

6 CH aromatic signals

How many CH₂ signals ?

6 CH₃ mesityl signals

steric congestion

¹H NMR spectrum

The methylene hydrogens are diastereotopic

6 CH aromatic signals6 CH₃ mesityl signals

two signals at 3.69 and 4.81 ppm

Chemical Shift

- **Chemical shift for a given molecule:**
- Number of signals = nonequivalent nuclei molecular symmetry
- •Intensity = number of nuclei
- Position in the spectrum = shielding electronic structure
- Multiplicity = connectivity of atoms and groups

Integration

The area under each signal is proportional to the number of protons that give rise to that signal

The height of each integration step is proportional to the area under a specific signal

The integration tells us the relative number of protons that give rise to each signal, not absolute number

Relative Signal Intensity

Polyphosphate Chain Length

Relative Signal Intensity

