The Non-local Contribution to the Magnetic Shielding Constant

$$\sigma = \sigma_{dia} + \sigma_{para} + \Sigma \sigma_{nonloc}$$

$$\log a = \log a$$

magnetic anisotropy of neighboring groups

temperature

isotope shift

solvent effects ASIS, SIIS

H-bonding

concentration effects

Magnetic Anisotropy of Neighboring Groups

Magnetic anisotropy of neighboring groups Remote shielding effects by electrons of non-spherically symmetric groups – (nearly all groups, but some strong) In a magnetic field, valence electrons are induced to circulate. This generates a secondary magnetic field that opposes/enhances the applied field near the nucleus

A higher/lower field is needed to achieve resonance = shielding/deshielding effect

McConnell formula (cylindrical symmetry)

$$\begin{split} \sigma_{\rm group} &= (\chi_{\parallel} - \chi_{\perp}) \; (1 - 3 \, \cos^2 \theta) / (3r^3) \\ \chi_{\parallel} \ , \; \chi_{\perp} < \; 0 & 1 - 3 \, \cos^2 \theta = 0 \\ & \text{for } \theta = 54.7^{\circ} \end{split}$$

H = measured nucleusZ = anisotropic neighboring groups

McConnel formula (cylindrical symmetry, group Z approximated as a magnetic dipole

 $\sigma_{\rm group} = (\chi_{\parallel} - \chi_{\perp}) \ (1 - 3 \ \cos^2 \theta) / (3r^3)$

 $\boldsymbol{\theta}$ is the angle between the vector \mathbf{r} and the symmetry axis

 $(\chi_{\parallel} - \chi_{\perp})$ the molar anisotropy of the bond

 χ_{\parallel} - χ_{\perp} the susceptibilities parallel and perpendicular to the symmetry axis

Groups with Magnetic Anisotropy

Ring Current in Aromatic Rings

 π electrons in aromatic rings are induced to circulate in a magnetic field

Diatropic ring current

•induces magnetic field aligned with the applied field in the vicinity of the aryl protons (causing deshielding = downfield shift)

•opposes the applied field at protons above and below the ring (causing shielding = upfield shift)

Ring Current in Aromatic Rings

Octamethyl-[2, 2]-metacyclophane

8 Me groups on C-C bridges not shown

Ring Current in Aromatic Rings

Ring Current in Aromatic Rings

1,6-methano[10]annulene

Ring Current in Antiaromatic Rings

Ring systems of antiaromatic character with [4n] π-electrons exhibit a reversed anisotropy effect of decreased intensity – paratropic ring current

•a deshielding area above and below the plane of the ring system
•a shielding area in the plane of the ring system

pentalene

shielding surfaces
0.1 ppm in yellow
0.5 ppm in green
1 ppm in green-blue
2 ppm in cyan
5 ppm in blue
deshielding surface at 0.1 ppm in red

Ring Current in Aromatic/Antiaromatic Rings

tub conformer (non-planar) cyclooctatetraene stable b.p. 142 °C gives alkene-like reactions 8 π-electrons

pentalene (planar) very unstable 8 π-electrons

azulene (planar) h aromatic stability 10 π-electrons

heptalene (planar) very unstable 12 π-electrons

NICS Nucleus independent chemical shift

- absolute shielding calculated in the center of a molecule
- measures aromaticity

Negative NICS = aromatic Positive NICS = antiaromatic

Aromatic/Antiaromatic Rings ¹H NMR

Trans-15,16-dimethyl-15,16-dihydropyrene

aromatic [4n+2] **π**-electrons Trans-15,16-dimethyl-15,16-dihydropyrene dianion

antiaromatic [4n] π-electrons

Aromatic/Antiaromatic Rings

Low temp. ¹H NMR

[18] annulene dianions
antiaromatic
[4n] π-electrons
Paratropic ring current

[18] annulene
aromatic
[4n+2] π-electrons
Diatropic ring current

Kekulene

[4n+2] π-electrons

Kekulene is extremely insoluble. ¹H NMR spectrum taken at 200° C in deuterated tetrachlorobenzene

Magnetic Anisotropy of Ethylene

Ethylenic H

Magnetic Anisotropy of Ethylene

C = grey, H = black)
0.1 ppm deshielding isosurface = yellow
0.1 ppm shielding isosurface = magenta

The equatorial protons are deshielded by 0.48 ppm wrt the axial

Magnetic Anisotropy of C₆₀

Paratropic ring current +4.5 ppm Diatropic ring current -7.0 ppm

Magnetic Anisotropy ${}^{3}\text{He} + C_{60}/C_{70}$

650 °C 3000 bar

³He (a) C₆₀

 $^{3}\text{He}(a)C_{70}$

δ (³He) –6.3 ppm

δ (³He) –28.8 ppm

	Neutral ^[a]	Anion	$\Delta^{\rm [d]}$
He@C ₆₀	-6.40	-49.27 ^[b] , (-49.17) ^[c]	-42.87
He@C ₇₀	—28.82, (—28.81)	+8.20 ^[b] , (+8.04) ^[c]	+37.02
He@C ₇₆	-18.75, (-18.61)	-20.62, (-20.55)	-1.87
He@C ₇₈ -C _{2ν}	-16.91, (-16.79)	-10.02	+ 6.89
He@C ₇₈ -D ₃	-11.94	-32.39, (-32.54)	-20.45
He@C ₇₈ -C' _{2v}	—17.60, (—17.45)	—13.50, (—13.61)	+ 4.1
He@C ₈₄	-7.53, (-7.57),	-22.12, (-22.06),	≈ -12
(mixture of	-8.40, (-8.43),	-22.80, (-22.76)	
isomers)	-8.99, -9.64,		
	(-9.68)		

³He (a) C_{60} \longrightarrow ³He (a) C_{60}^{6-} δ (³He) -6.3 ppm δ (³He) -49.2 ppm shifted to high field = higher aromatic character 6-MRs and 5-MRs of the fullerene cage of C_{60}^{6-} show diamagnetic ring currents

	Neutral ^[a]	Anion	$\Delta^{\rm [d]}$
He@C₀₀	-6.40	-49.27 ^[b] , (-49.17) ^[c]	-42.87
He@C ₇₀	—28.82, (—28.81)	+8.20 ^[b] , (+8.04) ^[c]	+37.02
He@C ₇₆	–18.75, (–18.61)	—20.62, (—20.55)	-1.87
He@C ₇₈ -C ₂	—16.91, (—16.79)	-10.02	+ 6.89
He@C ₇₈ -D ₃	-11.94	—32.39, (—32.54)	-20.45
He@C ₇₈ -C _{2v}	—17.60, (—17.45)	—13.50, (—13.61)	+ 4.1
He@C ₈₄	—7.53, (—7.57),	—22.12, (—22.06),	≈ -12
(mixture of	-8.40, (-8.43),	—22.80, (—22.76)	
isomers)	-8.99, -9.64,		
	(-9.68)		

³He @ C₇₀ δ (³He) -28.8 ppm • ${}^{3}\text{He}$ (*a*) C_{70}^{6-} δ (³He) +8.2 ppm

shifted to low field = a reduction in aromaticity

¹H NMR spectra

 H_2 in liquids ~4 ppm

 $H_2(a)C_{60}$ in 1,2-dichlorobenzene- d_4 –1.5 ppm

Ortho- and Parahydrogen

The ¹H NMR spectrum of 2 in pyridine-d₅

- A singlet at δ -32.18 (16 H) characteristic of a C₈H₈ ligand bound to uranium(IV)

- Two signals at δ +4.49 (8 H) and +1.96 (12 H) due to a single NEt₄⁺ group

Paramagnetic compounds

•Organic radicals, transition metal complexes •Unpaired electron = large fluctuating magnetic field •Chemical shift – ¹H NMR range 200 ppm •Relaxation – unpaired electron reduces T_1 and T_2 = broad lines

•Coupling of nuclear and electron spins

Isotropic shift (diamagnetic vs. paramagnetic)

 $\Delta v_{iso} = \Delta v_{diamag} - \Delta v_{paramag}$

Contact shift – delocalized e = through bond Pseudocontact – dipolar = through space

$$\Delta v_{iso} = \Delta v_{cont} + \Delta v_{pseudocont}$$

Pseudocontact Shift

The anisotropic magnetic susceptibility affects the Larmor frequencies of nearby nuclei the throughspace "dipolar" or "pseudocontact" shift

9 H along the Fe-C bond vector are shifted downfield (the addition of the internal field to the applied field causes them to resonate at a low applied field)

H along the yz plane (perpendicular to the Fe-C bond vector) are shifted upfield An analogy is the diamagnetic "ring current" in aromatics, which gives downfield shifts of protons in the plane of the electron circulation and upfield shifts of protons normal to the plane of the electron circulation.

Pseudocontact Shift

The paramagnetic current in the iron compounds shifts H in the yz plane upfield those normal to the yz plane downfield

The dominance of the pseudocontact shift is anomalous for paramagnetic complexes, for which the chemical shifts typically are dominated by the through-bond "contact" shift.

Pseudocontact Shift

Solvent Effects

Chemical shift – considerable
Coupling constants – small
Relaxation – higher viscosity reduces T₁ and T₂ of small molecules

Van der Waals forces 0.1 – 0.2 ppm in ¹H NMR Magnetic anisotropy of solvent – benzene, aromatics (solvent/solute orientation not averaged to zero) Hydrogen bonding

¹H Chemical Shifts of Methanol in Selected Solvents

Solven	t CDCl ₃	CD ₃ COCD ₃	CD ₃ SOCD ₃	CD₃C≡N
CH ₃	3.40	3.31	3.16	3.28
O–H	1.10	3.12	4.01	2.16

Hydrogen Bonding

Increasing concentration More extensive H-bonding Deshielding of OH signal

Hydrogen Bonding

0.0 ppm

-36.1 ppm

δ (¹⁷O) water liquid gas

Hydrogen Bonding

Ar \bigcirc $H_b \oplus H_3$ CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 H_3C (CH_3) CH_3 CH_3

The methylene hydrogens are diastereotopic – steric congestion

two H signals at 3.69 and 4.81 ppm

H-F hydrogen bonding H_a 6.50 ppm – deshielding coupling to F nucleus

doublet of doublets ${}^{1}J_{H-F} = 9.2 \text{ Hz}$ ${}^{2}J_{H-H} = 12.9 \text{ Hz}$

The peaks marked by *correspond to mesityl CH resonances

Temperature Effects

Anharmonic potential

Occupation of vibrational levels changes with temperature Changes in effective distance between atoms Chemical shift is a weighted average of the individual vibrational states

Temperature in NMR

- **Temperature dependent NMR parameters**
- Chemical shift
- •Number of signals dynamic NMR spectroscopy
- Kinetics of exchange processes
- •Equilibrium reaction, tautomers, conformers
- •Relaxation T_1 and T_2 depend on molecular tumbling
- •Dipolar and scalar coupling exchange
- •Molecular diffusion coefficient D Stokes-Einstein

•Equilibrium magnetization M₀

Thermocouple position wrt sample Temperature gradients within the sample Sample heating by decoupling power

Methanol Thermometer

Residual proton signals of methanol-d₄ at 300 K under optimal tuning/matching conditions. The linewidth is about 2 Hz.

$$\Delta \delta = -1.5243 \cdot 10^{-5} \times T^2 - 5.1576 \cdot 10^{-4} \times T + 3.0528$$

 $\Delta\delta$ is the chemical shift difference (in ppm) and T represents the temperature (between 280 and 328 K) measured by the Pt-100 resistor within the sample.

Methanol (neat)

Temperature range: 178 - 330 K **Peaks used:** $-CH_3$ and -OH **Equation:** T [K] = 409.0 - 36.54 $\Delta\delta$ - 21.85 ($\Delta\delta$)² C. Amman, P. Meier and A. E. Merbach, *J. Magn. Reson.* **1982**, *46*, 319-321.

Ethylene glycol (neat)

Temperature range: 273 - 416 K **Peaks used:** $-CH_2$ - and -OH **Equation:** T [K] = 466.5 - 102.00 $\Delta\delta$ C. Amman, P. Meier and A. E. Merbach, *J. Magn. Reson.* **1982**, *46*, 319-321.

CCl₄ and (CD₃)₂CO (50/50 vol% mixture)

Temperature range: 190 - 360 K **Peaks used:** CD_3 -**C**O-CD₃ and **C**Cl₄ **Equation:** T [K] = 5802.3 - 50.73 $\Delta\delta$ J. J. Led, S. B. Petersen, *J. Magn. Reson.* **1978**, *32*, 1-17.

TeMe₂ (neat) Temperature range: Peaks used: ¹²⁵Te high field shift **0.128 ppm K⁻¹**

Ideal Thermometer

Nonreactive and stable/ internal thermometer

Intramolecular effect / one compound added, no concentration, solvent dependency

Wide range of temperatures

Linear response

Strong response $\Delta\delta/\Delta T$

Solvent independent

Chemical Shift Thermometer

¹³C Enriched

