Chemical shift for a given molecule:

- Number of signals = nonequivalent nuclei molecular symmetry
- Relative intensity = number of nuclei
- Position in the spectrum = shielding/chemical shift electronic structure
- Multiplicity = connectivity of atoms and groups

Magnetic Coupling

The interaction of nuclear spins is composed of two parts:

1. Dipolar coupling direct interaction of magnetic moments solids oriented phases NOE $B_{\mu z} \sim \mu r_{A2}$ relaxation

$$B_{\mu z} \sim \mu r_{AX}^{-3} (3 \cos^2 \Theta - 1)$$

2. Scalar coupling

indirect interaction mediated by electrons chemical information about the bonding

Dipolar Coupling

Dipolar Coupling

 $B_{\mu z} \sim \mu r_{AX}^{-3} (3 \cos^2 \Theta - 1)$

Analysis of the coupling patterns consists of three parts:

- number of lines in a multiplet
- relative intensities of lines in the multiplet

• magnitude (and possibly sign) of the coupling constants

Scalar (Spin-Spin) Coupling

The simplest case: Two magnetically active nuclei Interacting through bonds (see each other) Both spins $I = \frac{1}{2}$

A splitting of a signal = more energy levels involved in the transitions

Origin = The magnetic moment of the nucleus H_a produces polarization at H_b (and vice versa)

number	spin states	energy
1	αα	$+\frac{1}{2}v_{0,1}+\frac{1}{2}v_{0,2}+\frac{1}{4}J_{12}$
2	$\alpha\beta$	$+\frac{1}{2}v_{0,1} - \frac{1}{2}v_{0,2} - \frac{1}{4}J_{12}$
3	βα	$-\frac{1}{2}v_{0,1} + \frac{1}{2}v_{0,2} - \frac{1}{4}J_{12}$
4	$\beta\beta$	$-\frac{1}{2}v_{0,1} - \frac{1}{2}v_{0,2} + \frac{1}{4}J_{12}$

Spectrum of H_a

Two Spins $I = \frac{1}{2}$

Two Spins I = $\frac{1}{2}$

transition	spin states	frequency
$1 \rightarrow 2$	$\alpha \alpha \rightarrow \alpha \beta$	$-v_{0,2} - \frac{1}{2}J_{12}$
$3 \rightarrow 4$	$\beta \alpha \rightarrow \beta \beta$	$-v_{0,2} + \frac{1}{2}J_{12}$
$1 \rightarrow 3$	$\alpha \alpha \rightarrow \beta \alpha$	$-v_{0,1} - \frac{1}{2}J_{12}$
$2 \rightarrow 4$	$\alpha\beta \rightarrow \beta\beta$	$-v_{0,1} + \frac{1}{2}J_{12}$

Homo vs. Hetero Coupling

$$\mathbf{M} = 2 \mathbf{n} \mathbf{I} + 1$$

17

First Order NMR Coupling Patterns

Line intensities of the multiplet A are given by the coefficients of polynomial expansion

AX,

Spin, I_X Polynomial, n = number of nuclei X

1/2	$(x + y)^n$	$^{1}\mathrm{H}$
1	$(x^2 + xy + y^2)^n$	² H, ⁶ Li, ¹⁴ N
3/2	$(x^3 + x^2y + xy^2 + y^3)^n$	¹¹ B, ⁷ Li
2	$(x^4 + x^3y + x^2y^2 + xy^3 + y^4)^n$	-
5/2	$(x^5 + x^4y + x^3y^2 + x^2y^3 + xy^4 + y^5)^n$	¹⁷ O , ²⁷ Al
3	$(x^6 + x^5y + x^4y^2 + x^3y^3 + x^2y^4 + xy^5 + y^6)^n$	¹⁰ B
7/2	$(x^7 + x^6y + x^5y^2 + x^4y^3 + x^3y^4 + x^2y^5 + xy^6 + y^7)^n$	⁵¹ V, ⁵⁹ Co

19

Examples

Spin¹/₂ Pascal's Triangle

Pattern	n	Relative Peak Height $(x + y)^n$
Singlet	0	1
Doublet	1	1:1
Triplet	2	1:2:1
Quartet	3	1:3:3:1
Quintet	4	1:4:6:4:1
Sextet	5	1:5:10:10:5:1
And so on		

Coupling with Several Spins

21

¹¹B NMR Spectrum of K[B(CF=CF₂)₄]

¹¹B NMR spectrum of K[B(CF=CF₂)₄] in CD₃CN: an overlapping quintet of quintets of quintets $({}^{2}J_{B,F} = 21.5, {}^{3}J_{B,F} = 3.2, {}^{3}J_{B,F} = 2.2 \text{ Hz}).$

$K[AgF_4]$

 $K[AgF_4] d^8$ square planar

¹⁰⁹Ag I = ¹/₂ NA = 48.2% γ = - 1.2448 10⁷ rad T⁻¹ s⁻¹ ¹⁰⁷Ag I = ¹/₂ NA = 51.8% γ = - 1.0828 10⁷ rad T⁻¹ s⁻¹

$K[AgF_4]$

 $\mathbf{M} = 2\mathbf{n}\mathbf{I} + 1$

$${}^{1}J({}^{109}Ag - F) = 425.8 \text{ Hz}$$

 $^{1}J(^{107}Ag - F) = 370.4 \text{ Hz}$

Fig. 2. The ¹⁰⁹Ag NMR DEPT spectrum of AgF₄– ion recorded at -40° C in HF utilizing polarization transfer from ¹⁹F (DEPTC pulse train, repetition delay 1 s, d2 1.2 ms, number of scans 3948, acquisition time 0.7 s).

¹J(¹⁰⁹Ag – F) must have the same value in both ¹⁰⁹Ag and ¹⁹F spectra

Signal Multiplicity TcO_4^- in 20.1% enriched $H_2^{17}O$.

Signal Multiplicity

¹³C enriched CN⁻

 $M = \Pi(2 n_i I_i + 1)$

 ^{2}J (T1-C_C) < ^{1}J (T1-C_B) < ^{2}J (T1-C_A)

cis	C _C	0.45 kHz
trans	C _A	9.71 kHz

Indirect nuclear spin-spin coupling constants

- •through-bond
- •through-space
- •through hydrogen bonds

Spin-spin couplings between two nuclei will be dependent upon several factors:

- the nuclei involved magnetogyric ratio
- the distance between the two nuclei
- the angle of interaction between the two nuclei
- the nuclear spin of the nuclei

The most important contribution to scalar coupling arises from the FERMI-CONTACT INTERACTION

which can be described in the Dirac-vector model:

The nuclear spin polarization of nucleus A in a magnetic field polarizes the spins of a bonding electron pair, which in turn transfer this polarization to nuclear spin **B**.

FERMI-CONTACT INTERACTION is mediated only by selectrons (p, d, f electrons have no contact with the nucleus)

s-electron has definite probability at nucleus e-spin and nuclear spin can interact only when they occupy same space

An approximate expression for the scalar coupling constant J was given by Mc CONNELL:

 $J_{AB} \sim \gamma_{A} \gamma_{B} s_{A}^{2}(0) s_{B}^{2}(0) (\Delta E)^{-1} \alpha_{AB}^{2}$ $s^{2}(0) = s \text{-electron density at the nucleus}$ $\alpha_{AB}^{2} = s \text{-character in the A-B bond}$

Conventions on the Notation of Scalar Coupling Constants

Spin-spin couplings are generally expressed in terms of the COUPLING CONSTANT ${}^{n}J$ where n denotes the number of bonds between coupled nuclei Dimension [J] = s⁻¹ [Hz]

The magnitude of J depends on the gyromagnetic ratios γ_A , γ_B of the coupled nuclei. For comparison of coupling constants involving different isotopes use the REDUCED COUPLING CONSTANT K

$$K_{AB} = (4\pi^2/h) (\gamma_A \gamma_B)^{-1} J_{AB}$$

Dimension [K] = 10^{19} N A² m⁻³

Scalar Coupling Constants

To compare substituent influences on coupling for different nuclei, use

the EFECTIVE REDUCED COUPLING CONSTANT K'

 $K'_{AB} = K_{AB} [s_A^2(0) s_B^2(0)]^{-1}$

Dimension [K'] = 10^{42} N A⁻² m³

Signs of Scalar Coupling Constants

Signs of scalar coupling may be both POSITIVE or NEGATIVE. The sign of a coupling constant is defined as follows:

 $K_{AB} < 0$ if PARALLEL alignment of the spins I(A) and I(B) is energetically favored

 $K_{AB} > 0$ if ANTIPARALLEL alignment of the spins I(A) and I(B) is energetically favored

Signs of Scalar Coupling Constants

> 0 if γ_A , γ_B have same sign

 J_{AB} < 0 if γ_A , γ_B have different sign

K_{AB}

NMR spectroscopic measurements in liquids yield generally only information on RELATIVE SIGNS of two couplings, i.e. $K_{AB} / K_{AC} > 0$ or $K_{AB} / K_{AC} < 0$. Determination of absolute signs for K_{AB} or K_{AC} requires other experiments (e.g. molecular beam experiments, observation of dipolar interactions in the solid state) Signs of Scalar Coupling Constants The sign of ¹K_{EH} is generally positive.

(E = any first to fourth row atom)

If the relative sign of a coupling constant ${}^{n}K_{XY}$ can be determined from ${}^{n}K_{XY}$ / ${}^{1}K_{EH}$, it can be translated into an absolute sign.

Methods for sign determination:

 analysis of higher order spectra
 homo- or heteronuclear 2D-Experiments
 selective irradiation experiment

 Coupling signs may provide useful structural information on:

 the number of bonds connecting two nuclei
 the oxidation state of elements
 the stereochemical details (conformation and configuration analysis)

Visualization of Spin–Spin Coupling

$$J_{AB} = \frac{\hbar}{2\pi} \gamma_A \gamma_B K_{AB} = \frac{1}{2} \left[E(\uparrow\uparrow) - E(\uparrow\downarrow) \right]$$

the energy splitting between states with parallel and antiparallel nuclear spins

$$J_{AB} = \frac{\hbar}{2\pi} \gamma_A \gamma_B K_{AB} = \frac{1}{2} \int \left[\varepsilon^{\uparrow\uparrow}(r) - \varepsilon^{\uparrow\downarrow}(r) \right] dV = \frac{\hbar}{2\pi} \gamma_A \gamma_B \int \varepsilon_{AB}(r) dV$$

 $\varepsilon_{AB}(r)$ = the coupling energy density (CED) integral of CED over all space = K_{AB} CED is a realspace function, can be visualized in 3D contains all the information about the propagation of the nuclear spin–spin interaction throughout a molecule
Visualization of Spin–Spin Coupling

$$J_{AB} = \frac{\hbar}{2\pi} \gamma_A \gamma_B K_{AB} = \frac{1}{2} \int \left[\varepsilon^{\uparrow\uparrow}(r) - \varepsilon^{\uparrow\downarrow}(r) \right] dV = \frac{\hbar}{2\pi} \gamma_A \gamma_B \int \varepsilon_{AB}(r) dV$$

Benzene

H₂P-CH₂-CH₂-PH₂

through-bond

through-space

Visualization of Spin–Spin Coupling

$$\rho_{AB}(r) = \frac{\rho^{\uparrow\uparrow}(r) - \rho^{\uparrow\downarrow}(r)}{\lambda_1 \lambda_2}$$

The coupling electron deformation density (CDD), the integration of CDD over space = 0

Types of Coupling

Coupling between two nuclei can be categorized as follows:

Homonuclear Coupling - coupling between nuclei of the same type ¹H-C-C-¹H, ¹⁹⁵Pt-¹⁹⁵Pt, ³¹P-C-³¹P, ¹⁹⁹Hg-C-C-¹⁹⁹Hg

Heteronuclear Coupling

- coupling between nuclei of different types ¹H-¹³C, ¹H-³¹P, ²⁰⁵Tl-¹⁹⁵Pt, ¹⁴N-⁵¹V

Distance Dependence

The absolute value of the coupling constant decreases as the number of interceding bonds between coupled nuclei increases. The order of the strength of coupling is as follows: ${}^{1}J > {}^{2}J > {}^{3}J > {}^{4}J > {}^{n}J$

¹J one-bond or direct

 ^{2}J two-bond or geminal

³J three-bond or vicinal

ⁿJ long-range

Distance Dependence

 $|^{1}J > {}^{3}J > {}^{2}J$

 ${}^{3}J_{PCCC} = 14 \text{ Hz}$ ${}^{2}J_{PCC} = 12 \text{ Hz}$ ${}^{1}J_{PC} = 55 \text{ Hz}$

Largest Heteronuclear J

 $^{1}J(^{205}Tl-^{195}Pt), kHz !!!!$

Largest Homonuclear J

 $^{1}J(^{199}Hg-^{199}Hg) =$

220 300 Hz

Fig. 1 Structure of $[Hg_2(18 \text{-crown-6})_2(Me_2SO)(\mu-Me_2SO)]_2^{4+}$ (cation of 2). Thermal ellipsoids are shown at the 20% probability level.

$^{1}J(^{199}Hg-^{199}Hg) =$

263 200 Hz in CD₂Cl₂ 284 100 Hz in MeOH

Fig. 2 Structure of $\{[Hg_2(18\text{-}crown-6)(15\text{-}crown-5)(H_2O)]^{2+}$ (part of 3c). Thermal ellipsoids are shown at the 20% probability level.

Dependence on Magnetogyric Ratio

For the same elements, different nuclides

 $\overline{J_{AB}} \sim \gamma_{\rm A} \gamma_{\rm B} s_{\rm A}^2(0) s_{\rm B}^2(0) (\Delta E)^{-1} \alpha_{\rm AB}^2$

 BH_4^-

 $^{1}J(^{11}B - H) = 80 \text{ Hz}$ $\gamma(^{11}B) = 8.57 \text{ 10}^{7} \text{ rad } \text{T}^{-1}\text{s}^{-1}$

 $^{1}J(^{10}B - H) = 28 \text{ Hz}$ $\gamma(^{10}B) = 2.87 \ 10^{7} \text{ rad } \text{T}^{-1}\text{s}^{-1}$

Dependence on Magnetogyric Ratio

$J(A-B) \sim \gamma_A \gamma_B s_A^2(0) s_B^2(0) (\Delta E)^{-1} \alpha_{AB}^2$

$$J(A-B) = \gamma_A \gamma_B F$$
$$J(A-B^*) = \gamma_A \gamma_{B^*} F$$

$$\frac{J(A-B)}{J(A-B^*)} = \frac{\gamma_B}{\gamma_{B^*}}$$

The nuclide with larger y has larger coupling constant

Dependence on Magnetogyric Ratio

$\overline{J_{AB}} \sim \overline{\gamma_A} \gamma_B s_A^2(0) s_B^2(0) (\Delta E)^{-1} \alpha_{AB}^2$

compound	γ (X) 10 ⁷ rad T ⁻¹ s ⁻¹	¹ J(¹¹⁷ Sn – X) Hz	¹ J(¹¹⁹ Sn – X) Hz
$^{n}Bu_{3}Sn - H$	26.7510	1505	1575
$^{n}Bu_{3}Sn - D$	4.1064	231	242
$^{n}Bu_{3}Sn - T$	28.5335	1610	1685

Effects of Electronegative Substituents

 $J_{AB} \sim \gamma_{\rm A} \gamma_{\rm B} s_{\rm A}^{2}(0) s_{\rm B}^{2}(0) (\Delta E)^{-1} \alpha_{\rm AB}^{2}$

- 1. Changes in hybridization: Bent's rule, more electronegative substituents prefer orbitals with more p-character. Remaining orbitals have more s-character α_{AB}^2 , hence the J increases
- 2. Removal of electron density increases effective nuclear charge, contraction of e-cloud, s-density increases $s_A^2(0)$, hence the J increases

Effects of Electronegativity $J_{AB} \sim \gamma_A \gamma_B s_A^2(0) s_B^2(0) (\Delta E)^{-1} \alpha_{AB}^2$

 ${}^{1}J({}^{195}Pt - P_{A}) = 4179 Hz$ ${}^{1}J({}^{195}Pt - P_{A}) = 1719 Hz$

48

Effects of Electronegativity

J increases with increasing sum of substituent electronegativity

$^{1}J(WP)$ (in Hz)	data for	some complexes	of the type	$W(CO)_{5}(PX)$	$[H_{3-n}]$
---------------------	----------	----------------	-------------	-----------------	-------------

Compound	¹ J(WP)	$\sum x^{a}$	
[W(CO) ₅ (PH ₃)]	215.8	6.6	
[W(CO), (PH ₂ Cl)]	267.0	7.6	
[W(CO), (PH, F)]	284.4	8.4	
[W(CO) _s (PHCl ₂)]	336.9	8.6	
[W(CO), (PHFCl)]	361.0	9.4	
[W(CO) _s (PCl ₃)]	213.0	9.6	
[W(CO) ₄ (PHF ₂)]	376.0	10.2	
[W(CO) ₅ (PF ₃)]	485.0	12.0	

Effects of Coordination Number

Increasing coordination number results in decreasing J

Effects of Coordination Number

$[Cp_2WH_2] \qquad [Cp_2WH_3]^+$ ¹J(¹⁸³W - H) = 73.2 Hz 47.8 Hz

Increasing coordination number results in decreasing J

$${}^{1}J(P-X) = A \frac{\% s(P)\% s(X)}{1 - s^{2}(P-X)} + B$$

 s^2 (P-X) = overlap integral in the P-X bond

¹J(P - X) decreases with increasing coordination number and oxidation state

W oxidation state

Group	hybridization	$^{1}J(^{183}W - ^{13}C), Hz$
alkyl	sp ³	80
alkylidene	sp^2	120
alkylidyne	sp	210

 1 J(P-F_{axial}) = 777 Hz 1 J(P-F_{equat}) = 966 Hz 2 J(P-F_{axial}) = 53 Hz 2 J(P-F_{equat}) = 130 Hz

¹J (C-H), Hz

57

with zero electronegativity Resides in orbital with large s-character₅₈

Effects of Coordination Number

${}^{1}J({}^{31}P - F)$ negative

-1400 Hz-1109 Hz-1080 Hz-706 HzIncreasing coordination number results in decreasing JDilution of s-character into more bonds

Effects of Oxidation State ¹J(¹⁹⁵Pt - ³¹P)

Increasing oxidation state results in decreasing J Decreasing electron density

Information from signs of K_{AB}

	PIII	$\mathbf{P}^{\mathbf{V}}$	PV
lp changes sign	Me ^{···} Me	Me Me Me Me	O Me ⁻ Me Me
¹ J(P - C)	-14	56	68
	Sn ^{II}	Sn ^{IV}	Sn ^{IV}
	Me ^{.,} ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	⊕ Me—Sn ^{\\\\} Me Me	Me Me ^{.,,,,,} Me Me
1 J(Sn - C)	155	-380	-339

61

Angle Dependence

Two types of coupling are most affected by bond angles:

•geminal coupling (two-bond coupling or ²J) •vicinal coupling (three-bond coupling or ³J)

Geminal Coupling

Geminal coupling or ${}^{2}J$ coupling is dependent upon the bond angle between the nuclei.

The smaller the angle the bigger the coupling constant.

Geminal Coupling ${}^{2}J({}^{1}H - {}^{1}H)$

The smaller the angle the bigger the coupling constant.

Trans/Cis Coupling $^{n}J(^{1}H - ^{1}H), Hz$ 0 - 3gem vic cis 6 - 12Η vic trans 12 - 18

Η

²J $(^{31}P\mu - Pd - ^{31}P)$

cis0 Hztrans213 Hz

Trans/Cis Coupling

2
J (31 P – M – 31 P)

cis < trans

Complex	Coord.	² J _{PP} cis, Hz	² J _{PP} trans, Hz
$PdCl_2(PMe_3)_2$	SP1	-8	610
$PtBr_2(PMe_3)_2$	SP1	-16	514
$Cr(CO)_4(PF_3)_2$	Oh	-36	-28
$Mo(CO)_4(PF_3)_2$	Oh	55	312
$Mo(CO)_4[P(NMe_2)_3]_2$	Oh	12	101
$W(CO)_4(PF_3)_2$	Oh	38	315
mer-RhCl ₃ (PMe ₃) ₃	Oh	-29	567

Vicinal Coupling

- Vicinal coupling or ${}^{3}J$ coupling is dependent upon the dihedral angle between the nuclei.
- The more eclipsed or antiperiplanar the nuclei the greater the coupling constant.

The relationship between dihedral angle and coupling constant is known as the Karplus curve.

6

4

2

۰Ď

180

68

160

Vicinal Coupling

α = 180° ³J = 10 - 14 Hz

the Karplus equation

$$^{3}J = A + B\cos\alpha + C\cos^{2}\alpha$$

Population Analysis

experiment

$$\langle J_{\alpha\beta1} \rangle = J_g p_1 + J_g p_2 + J_t p_3$$

$$\langle J_{\alpha\beta2} \rangle = J_g p_1 + J_t p_2 + J_g p_3$$

$$p_1 + p_2 + p_3 = 1$$

$$J_g (60^\circ)$$

3 inequivalent protons 2 time-averaged vicinal J (1 geminal J)

 p_i = population of rotamers

g = gauche, t = trans from independent measurements

Population Analysis

$$\langle J_{AX} \rangle = p J_{AX}^{Axial} + (1-p) J_{AX}^{Equ}$$
$$\langle J_{BX} \rangle = p J_{BX}^{Axial} + (1-p) J_{BX}^{Equ}$$
$$K = \frac{p}{1-p} = \exp(\frac{-\Delta G^0}{RT})$$
Decoupling

Heteronuclear broadband decoupling Selective homonuclear decoupling

¹⁵N-¹⁵N Coupling Across an NHN Hydrogen Bond

 $^{1}J(N,H) = -97.6 \text{ Hz}$

-218 -219 -220 -221 ppm

 $CD_2Cl_2/[d_6]DMSO$ (5:1) a) 233 K b) 233 K c) 193 K d) 193 K

 $^{2}J(^{15}N-^{15}N) = 16.5 \text{ Hz}$

⁶Li-¹⁵N Coupling

⁶Li I = 1 NA = 7.42 % ¹⁵N I = 1/2 NA = 0.37 %

75

⁶Li-¹⁵N Coupling

⁶Li NMR:

•two triplets 1:1 δ = 2.15 ppm (J_{LiN}= 3.7 Hz) a δ = 2.32 ppm (J_{LiN}= 6.1 Hz)

•triplet $\delta = 1.63$ ppm (J_{LiN}= 4.5 Hz)

⁶Li-¹⁵N Coupling

⁶Li NMR:

•two triplets 1:1 δ = 2.15 ppm (J_{LiN}= 3.7 Hz) a δ = 2.32 ppm (J_{LiN}= 6.1 Hz)

•triplet $\delta = 1.63$ ppm (J_{LiN}= 4.5 Hz)

