Capital letters A, B, C, M, A, X, Y,

```
Same letter = same chemical shift (A_3, B_2, X_6, ...)
```

Different letters = different chemical shifts

```
Letters close in the alphabet (A, B, C, ...)

J [Hz] of the same magnitude as \Delta v [Hz]
```

```
Letters separated in the alphabet (A, M, X,...) large separation of chemical shifts -different nuclei ({}^{1}H, {}^{31}P, {}^{195}Pt,...) -same nuclei but \Delta v [Hz] much larger than J !! \Delta v [Hz] depends on B<sub>0</sub> !!
```

Same letter = same chemical shift $(A_3, B_2, X_6, ...)$

 CH_2Cl_2

➤ Different letters = different chemical shifts

Two situations:

a) Complete equivalence =

Chemical shift equivalence (isochronous nuclei)
+ magnetic (spin-coupling) equivalence (isotachous)

Magnetic equivalence = each member of one group of spins is coupled equally to all members of any other group

 $A_2B_2, A_2X_2,...$

b) Chemical shift equivalence, magnetic INequivalence AA'BB', AA'XX', AA'A"XX'X",

AA'A"XX'X"X"XX⁴X⁵

 $[A[X]_2]_3$

Magnetic Inequivalence

AA'BB'

Prime vs. Bracket Notation

AA'BB' $[AB]_2$

 $\mathbf{A}_2\mathbf{B}_2 \qquad \qquad [\mathbf{A}_2\mathbf{B}_2]$

AA'BXX' $[AX]_2B$

 $AA'X_3X_3'$ $[AX_3]_2$

Magnetic Inequivalence

Bracket Notation

- Square brackets with subscript indicate repeated symmetry-related magnetically inequivalent groups of nuclei, e.g. [AB]₂
- Square bracket without subscript indicate magnetic equivalence of isochronous nuclei inside, e.g. $[A_6]$
- Each bracket represents a specific symmetry operation (see anthracene)
- Append a point group symbol to avoid ambiguity
- Free rotation apply Mortimer rule = the most symmetrical conformer

 $[[A]_2B]_2$

Ring plane

Plane perpendicular to ring

considering isotope shift: A[BC]₂DX

Spin Systems in ¹H NMR

When separated by more than 3 bonds, the spin systems can be considered separately (with exceptions)

AA'A"XX'X"

 AB_2XY_2

$${}^{3}J_{PH}(cis) = 10 - 40 \text{ Hz}$$

 ${}^{3}J_{PH}(trans) = 80 - 150 \text{ Hz}$

¹H, ³¹P

¹³C, ³¹P

¹H, ³¹P

AB System

The simplest higher-order spin system

$$J_{AB} = v_1 - v_2 = v_3 - v_4$$

$$\Delta v_{AB} = v_A - v_B = \sqrt{(v_1 - v_4)(v_2 - v_3)}$$

AB System

Spin-spin coupling

$$\frac{\Delta \nu_{\scriptscriptstyle AB}}{J_{\scriptscriptstyle AB}} >> 1$$

$$\frac{\Delta v}{J} > 1$$

$$\frac{\Delta v}{J}$$
 < 1

AB₂ Spin System

ABX Spin System

¹H, ¹³C

AB part = 2 AB pseudoquartets = 8 lines

X part = 6 lines

AB Part of the ABX Spin System

ABX Spin System

$$\begin{split} J_{AB} &= v_2 - v_1 = v_4 - v_3 = v_6 - v_5 = v_8 - v_7 \\ J_{AX} + J_{BX} &= v_{12} - v_9 \\ \Delta v_{AB} &= v_A - v_B \\ L &= \frac{1}{2} (J_{AX} - J_{BX}) \\ N &= \frac{1}{2} (J_{AX} + J_{BX}) \\ \Delta v_{AB}^{RED} &= \Delta v_{AB} + L = \sqrt{(v_4 - v_1)(v_3 - v_2)} \\ Midp &= \frac{1}{2} (v_A + v_B) + \frac{1}{2} N \\ \Delta v_{AB}^{BLUE} &= \Delta v_{AB} - L = \sqrt{(v_8 - v_5)(v_7 - v_6)} \\ Midp &= \frac{1}{2} (v_A + v_B) - \frac{1}{2} N \end{split}$$

X Part of the ABX Spin System

AA'XX' Spin System

4 coupling constants

Both part A and part X feature the same multiplet

symmetrical about v_A or v_X

Both parts have 12 lines with a center of symmetry at v_A or v_X

$$K = J_{AA'} + J_{XX'}$$
 $M = J_{AA'} - J_{XX'}$
 $N = J_{AX} + J_{AX'}$
 $L = J_{AX} - J_{AX'}$

AA'XX' Spin System

AA'XX' Spin System

$$\begin{split} &|N| = \nu_{1,2} - \nu_{3,4} = \left| J_{AX} + J_{AX'} \right| \\ &|K| = \nu_5 - \nu_6 = \nu_7 - \nu_8 = \left| J_{AA'} + J_{XX'} \right| \\ &|M| = \nu_9 - \nu_{10} = \nu_{11} - \nu_{12} = \left| J_{AA'} - J_{XX'} \right| \\ &|L| = \sqrt{(\nu_6 - \nu_7)(\nu_5 - \nu_8)} = \sqrt{(\nu_9 - \nu_{12})(\nu_{10} - \nu_{11})} = \left| J_{AX} - J_{AX'} \right| \\ &I_{1,2} = I_{3,4} = I_{5+6+7+8} = I_{9+10+11+12} \\ &\frac{I_9}{I_{10}} = \frac{I_{12}}{I_{11}} = \frac{\nu_{10} - \nu_{11}}{\nu_9 - \nu_{12}} \\ &\frac{I_5}{I_6} = \frac{I_8}{I_7} = \frac{\nu_6 - \nu_7}{\nu_5 - \nu_8} \end{split}$$

AA'X₃X₃' Spin System

¹H and ³¹P

$$H_3C$$
— P — M — P — CH_3

$P_8O_{12} \cdot 2BH_3$

$P_8O_{12} \cdot 2BH_3$

C_{2h} Molecular symmetry

³¹P Spin system

AA'BB'B"B"XX'

Nuclei P _A : P _B : P _X :	P4, P8 P2, P3, P6, P7 P1, P5	δ [ppm 82.65 80.95 70.5
H		0.8
Coupling ² J _{AB} : ² J _{BX} : ² J _{AX} : J _{AH} :	g constants J2-4, J3-4, J6-8, J7-8 J1-2, J 1-3, J5-6, J5-7 J1-8, J4-5 J4-H, J8-H	[Hz] 29.2 24.0 11.4 7.5

$P_8O_{12} \cdot 2BH_3$

Figure 7. 19 F NMR spectra of (CF₃)₃BCO (left), [(CF₃)₃BC(O)OH]⁻ (right) and [(CF₃)₃BCO₂]²⁻ (top).

Figure 8. 11 B NMR spectra of (CF₃)₃BCO (bottom), [(CF₃)₃BC(O)OH]⁻ (middle) and [(CF₃)₃BCO₂]²⁻ (top).

Figure 10. ¹³C NMR spectrum of $[(CF_3)_3BC(O)OH]^-$. The expanded sections of the two signals show the ${}^3J({}^{13}C, {}^{19}F)$ coupling patterns.

Figure 1. $^{13}C\{^{19}F\}$ NMR spectrum (top) and ^{13}C NMR spectrum (bottom) of $[(CF_3)_3BCP]^-$ in CD_3CN solution.

Figure 3. ³¹P {¹⁹F} NMR spectrum (top) and the ³¹P NMR spectrum (bottom) of [(CF₃)₃BCP]⁻ in CD₃CN solution.

