SYLICA 2013 Bowater lectures

Biophysical Methods to Study Molecular Interactions

Bowater Lectures in Brno, Feb. 2013

4 lectures on linked topics will be delivered during the coming week:

- Contemporary DNA Sequencing Technologies –
 26/2/2013 @ 10:00
- Using 'Omic Technologies to Investigate Gene Function – 26/2/2013 @ 14:00
- Biophysical Methods to Study Molecular Interactions
 27/2/2013 @ 10:00
- Synthetic Biology & Nanotechnology: Tomorrow's
 Molecular Biology? 28/2/2013 @ 10:00

Molecular Interactions

- For biological systems to function, interactions occur between many different types of molecules: DNA, RNA, Protein, Lipids, etc.
- To ensure that biological systems function appropriately, such interactions must be carefully regulated
- Wide range of Biophysical Chemistry approaches are useful for studying these interactions

Bonds & Molecular Interactions

- Interactions between molecules are central to how cells detect and respond to signals and affect:
 - ➤ Gene expression (transcription & translation)
 - >DNA replication, repair and recombination
 - **→** Signalling
 - ➤ And many other processes....
- Interactions are (mainly) mediated by many weak chemical bonds (van der Waals forces, hydrogen bonds, hydrophobic interactions)
- Accumulation of many bonds influences affinity and specificity of interactions

Biophysical Chemistry Approaches for Studies of Molecular Interactions

- Wide range of Biophysical Chemistry approaches are useful for studying molecular interactions:
 - > NMR
 - >X-ray crystallography
 - **>**SPR
 - >ITC
 - >CD
 - ➤ Gel electrophoresis
 - **EPR**
 - ➤ Mass spectrometry
 - ➤ Fluorescence

In vitro

Will also discuss other types of *in vivo* studies

In vitro and in vivo (?)

Biophysical Chemistry Approaches for Studies of Molecular Interactions

- Wide range of Biophysical Chemistry approaches are useful for studying molecular interactions:
 - **≻**NMR
 - >X-ray crystallography
 - **≻**SPR
 - >ITC
 - >CD
 - ➤ Gel electrophoresis
 - **EPR**
 - ➤ Mass spectrometry
 - > Fluorescence

Many of these techniques are particularly useful for determining the strength (affinity) of interactions

Protein-Nucleic Acid Interactions

- A wide range of Biophysical Chemistry methods have been used to study interactions between proteins and nucleic acids
- Particularly good for determining the strength (affinity) of the interactions
 - \triangleright High affinity, μ M nM: tend to involve sequence-specific interactions, e.g. restriction enzymes
 - ► Low affinity, $mM \mu M$: proteins tend to recognise aspects of "overall" structure i.e. not sequence-dependent

EMSA ("Gel Shift" Assay)

 Electrophoretic Mobility Shift Assay (EMSA) or "gel shift" can provide information about protein-NA interactions

"Footprinting" is a Technique to Identify a DNA-binding site

Premise: DNA bound by protein will be protected from chemical cleavage at its binding site

- 1) Isolate a DNA fragment thought to contain a binding site and "label" it
- 2) Bind protein to DNA in one tube; keep another as a "naked DNA" control
- 3) Treat both samples with chemical or enzymatic agent to cleave the DNA
- 4) Separate the fragments by gel electrophoresis and visualize bands on X-ray film or imager plate

Protein-DNA Footprinting

Box 26-1 Figure 1

Lehninger Principles of Biochemistry, Sixth Edition © 2013 W. H. Freeman and Company

Footprinting Results of RNA Polymerase Bound to Promoter

Box 26-1 Figure 2 *Lehninger Principles of Biochemistry*, Sixth Edition © 2013 W. H. Freeman and Company

Binding of Proteins to DNA Often Involves Hydrogen Bonding

- Gln/Asn can form specific
 H-bond with Adenine's N 6 and H-7 H's
- Arg can form specific Hbonds with Cytosine-Guanine base pair

• Major groove is right size for α -helix and has exposed H-bonding groups

DNA-binding domains

- Proteins generally recognise aspects of nucleic acid sequence, or variations in structure and/or flexibility
- High-resolution structures of many protein-DNA complexes have now been solved
- Similar structural domains occur in different proteins:
 - > Helix-turn-helix
 - **≻**Zinc-finger
 - ➤ Zinc-binding domain
 - ➤ Basic region-leucine zipper (bZIP)
 - >β-sheet recognition

The Helix-turn-helix Motif is Common in DNA-binding Proteins

(a)

- Each "helix-turn-helix" covers ~ 20 aa
 - \blacktriangleright One α -helix for DNA recognition, then β -turn, then another α -helix
 - Sequence-specific binding due to contacts between the recognition helix and the major groove
- Four DNA-binding helix-turnhelix motifs in the Lac repressor

Helix-turn-helix

 Helix-turn-helix is most common observed DNAbinding unit in prokaryotes

Note that 34 Å corresponds to 1 turn of DNA

Zinc-finger

- One of best-studied examples of DNA binding domain, but also binds RNA
- Each covers ~30 aa
- Binding is relatively weak, so typically there are a series of zinc fingers

Zinc Finger Motif is Common in Eukaryotic Transcription Factors

Figure 28-12
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

β-recognition motif

- In some prokaryotic regulatory proteins, this is an alternative DNA-binding motif
- E. coli methionine repressor binds DNA through insertion of pair of β-strands into major groove

Berg, Tymoczko & Stryer, "Biochemistry", 5th edn, 2002, p. 874

Protein-protein Interactions

- Various techniques are used to investigate proteinprotein interactions, including:
- Biochemical/biophysical
 - ➤ Isothermal calorimetry
 - ➤ Surface plasmon resonance (e.g. BIACore)
 - ➤ Mass spectrometry e.g. from protein complexes
 - ➤ "Pull-down" assays one protein can be bound by an antibody (immunoprecipitation) or via a "tag"
- Molecular/cellular biological
 - ➤ Two-hybrid experiments
 - > Fluorescent proteins

Identifying Protein-Protein Interactions

- Protein complex isolation
 - ➤ Epitope tag one protein in the complex
 - ➤ Gentle isolation of epitope-tagged protein will also isolate stably interacting proteins
 - ➤ All proteins isolated can be separated and identified

Figure 9-19
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

Procedure for TAP-Tagged Proteins

- Use of Tandem Affinity
 Purification (TAP) tags
 has enhanced the
 procedure
- Allows two purification steps eliminating loosely associated proteins, and minimizing non-specific binding

Figure 9-20
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

Yeast-Two Hybrid System

- Protein of interest tagged with the GAL4-activation domain
- DNA library with all yeast genes tagged with Gal4binding domain
- Reporter gene under the control of Gal4
- Differentially tagged proteins must interact in order to get expression of the reporter gene

Similar techniques
developed to use with
bacterial and
mammalian cells

Figure 9-21
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

Assessment of Protein-protein Interaction Data

- Currently believed that yeast has >30,000 different interactions (for ~6,000 proteins)
- Variety of studies using yeast (see von Mering et al. (2002) Nature, 417, 399-403)
- Overall conclusion is: different techniques identify different complexes!
- Results from protein-protein interaction studies should be confirmed by more than one experimental technique
- Especially important for considering if in vitro observations are relevant for in vivo situations

Study of Protein-protein Interactions *In Vivo*

- Popular technique is "Two-hybrid" screen (yeast, mammalian or bacterial)
- Various fluorescent techniques are also in use:
 - ➤ FRET fluorescence resonance energy transfer; reports on distance between 2 fluorophores
 - Fluorescent reporters expressed proteins emit fluorescence at specific wavelength
 - ➤ FRAP (FLIP) fluorescence recovery after photobleaching (fluorescence loss in photobleaching); allow movement of reporters to be monitored

Fluorescence can be used to Determine Protein Location *In Vivo*

- Use recombinant DNA technologies to attach
 Fluorescent Proteins to protein of interest
 - ➤ Visualize with a fluorescent microscope
- Immunofluorescence
 - ➤ Tag protein with primary antibody and detect with secondary antibody containing fluorescent tag
 - ➤ Protein can also be fused to a short epitope and the primary antibody detecting the epitope can be fluorescently labeled

Fluorescently-tagged Proteins

 Combination of molecular and cell biological studies analyse in vivo localisation of proteins expressed with a fluorescent "tag"

Important that "tag" does not interfere with protein

activity

 Can examine localisation of proteins containing different fluorophores

Bastiaens & Pepperkok (2000) *TiBS*, **25**, 631-637

Green Fluorescent Protein Tags

- Widely used tag is "Green fluorescent protein" (GFP)
- GFP was first discovered as a companion protein to aequorin, the chemiluminescent protein from Aequoria victoria

© C. Mills, Univ. Wash.

Green Fluorescent Protein Tags

- For GFP, the chromophore is a p-hydroxybenzylideneimidazolidone (green background)
- Consists of residues 65-67 (Ser dehydroTyr Gly) of protein and their cyclized backbone forms the imidazolidone ring
- Peptide backbone is shown in red

Green Fluorescent Protein Tags

- Amino acid sequence SYG can be found in a number of other non-fluorescent proteins, but it is usually not cyclized, and Tyr is not oxidized
- Implies that this tripeptide does not have intrinsic tendency to form such a chromophore

Development of Fluorescent Tags

- Mutagenesis studies yielded GFP variants with improved folding and expression properties
- Changes help:
 - accelerate speed and intensity of fluorophore formation
 - help the molecule fold correctly at 37 °C
 - overcome dimerization
 - improve expression by converting codons to those used by the organisms of interest
- These characteristics are combined in the GFP variant known as enhanced GFP (EGFP)

GFP-Tagged Protein Localization

Figure 9-16
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

Further Development of Tags

- Continued efforts to engineer (or isolate) new fluorophores and reporter classes:
 - brighter and more red-shifted proteins useful for multi-spectral imaging and FRET-based methods
 - increased brightness will help track single molecules
 - more pH resistance useful in acidic environments
- Advances in imaging systems are also important:
 - more sensitive and quicker camera systems
 - Filter systems for detecting different fluorophores
 - >software for discriminating fluorescent signals
- Understanding complex protein interactions and dynamics also requires kinetic modeling and analysis

GFP Turnover

- Analysis of protein turnover or temporal expression pattern and behavior is difficult with conventional GFP because the GFP chimeras are continuously being synthesized, folded, and degraded within cells
- Thus, at any particular time, proteins at different stages of their lifetime are being observed
- Several promising approaches have used FPs which have different fluorescent properties over time
- Another promising approach to studying protein lifetimes and turnover rates is the use of photoactivable fluorescent proteins

GFPs in Action!

- Photoactivatable fluorescent proteins display little initial fluorescence under excitation at imaging wavelength (λ)
- Fluorescence increases after irradiation at a different λ highlighting distinct pools of molecules within the cell
- Since only photoactivated molecules exhibit noticeable fluorescence, their behaviour can be studied independently of other newly synthesized proteins

Photoactivation

Immunofluorescence

Identifying Regions Involved in Protein-protein Interactions

- Once protein-protein interactions have been identified, it is important to establish how the interactions occur e.g. what regions or specific amino acids are important for the interaction?
- Well-used approach is to prepare different fragments or mutations of proteins and see if there is any effect on the protein-protein interaction
- Results usually confirmed by more than one experimental technique

Yeast-Two Hybrid System

- Protein of interest tagged with the GAL4-activation domain
- DNA library with all yeast genes tagged with Gal4binding domain
- Reporter gene under the control of Gal4
- Differentially tagged proteins must interact in order to get expression of the reporter gene

Figure 9-21
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

Transient Protein-protein Interactions

- Current proteomics studies have allowed the identification of protein interactions on large scale
- Protein networks underline the multi-specificity and dynamics of complexes involving transient
 interactions

 Biophysical methods are very useful to characterise such interactions

S

localisation and protein controlled by

localisation and protein concentration(s)

co-expression, subcellular localisation or compartmentalisation

level of gene expression/secretion, degradation, temporary storage, local molecular environment, diffusion or viscosity

and/or binding energy ΔG

molecular (cooperative/sillosteric) binding i.e. concentration of metabolite, protein or ions (e.g. ATP, Ca²¹) or covalent modification through enzymatic activity (e.g. PO₂)

pH, temperature, ionic strength

Nooren & Thornton (2003) EMBO J., 22, 3486-3492

Molecular Interactions Overview

- Biophysical chemistry approaches are good for studies of macromolecular interactions, particularly because they can provide quantitative data
- High-resolution structures have been identified for a wide range of interactions; particularly well-defined for some proteins binding to nucleic acids
- Many techniques developed to study protein-protein interactions in vivo
- Applications of fluorescence and fluorescent proteins provide important information about macromolecular interactions