

Never mind!

Acidity constants: HA (aq) \longrightarrow H*(aq) +A⁻(aq) $K_a^{\circ}(T) = a_{H} + a_{A} - /a_{HA}$ $K_a^{\circ}(H_2O, 298 \text{ K}) = a_{H} + a_{HO} - /a_{H_2O} = a_{H} + a_{HO} - = K_w^{\circ}(298 \text{ K});$ $pK_a^{\circ}(H_2O, 298 \text{ K}) = 14.0 \text{ (not 15.74!)}$ $K_a^{\circ}(H^+, 298 \text{ K}) = a_{H} + /a_{H^+} = 1; pK_a^{\circ}(H^+, 298 \text{ K}) = 0 \text{ (not } -1.74!)$ We measure concentrations: A = ecd (LFP, spectrophotometry); hence, we determine concentration quotients: $K_{a,c}(T) = c_{H} + c_{A} - /c_{HA}$ and need to know the hydrogen ion concentrations: c_{H^+} Keep ionic strength / constant, if necessary by addition of, e.g., KCI We need buffers for 3 < pH < 11 c_{H^+} is best calculated from the buffer ratio c_{HA}/c_{A^-} and known $K_{a,c}(I, T)$ -values given in the literature or known K_a° -values using known $\gamma(I, T)$: For pH ≤ 3 (... 4): $c_{H^+} = nominal concentration of a strong acid (HClO_4);$ For pH $\geq (10...)$ 11: $c_{H^+} = K_{w,c}(298 \text{ K}, I)/(C_{HO})_{nom}$

Cross-check

Measure pH with a glass electrode. The glass electode must be calibrated! (See provider instructions, e.g., Metrohm) Remarkably, glass electrode readings (pH)_{meas} are closer to pc_{H+} that to pa_{H+} !¹⁾ Your results should hold within:

$$(pH)_{meas} - (pc_{H+})_{calc} = 0.03 \pm 0.02$$

¹⁾ H. Sigel, A. D. Zuberbühler, O. Yamauchi, Anal. Chim. Acta, **1991**, 255, 63.

The practical approachChoose a well-known (preferably monoacid) buffer with
known pKa near (±1 unit) to that pKa which you want to determine.Titrate with 0.1 M strong base starting with 0.1 M HA plus dye or
with 0.1 M strong acid starting with buffer salt plus dye.Record spectra and get pH readings between small additions of
titrant.Global analysis of the spectral series (number of components)
and fit of an appropriate titration function.

The resulting concentration quotients

$K_{\rm a,c}({\rm AH}) = c_{\rm H^+} c_{\rm A^-}/c_{\rm AH}$

can be converted to thermodynamic acidity constants using activity coefficients from tables or estimated by the Debye–Hückel equation $(\gamma_{AH} \approx 1)$:

 $K_{\rm a}^{\circ}({\rm AH}) \approx K_{{\rm a},c}({\rm AH}) \gamma_{{\rm H}^+} \gamma_{{\rm A}^-} / \gamma_{{\rm AH}}$

ion	I = 0.01	I = 0.05	I = 0.1
H^+	0.914	0.86	0.83
Li ⁺ , PhCOO ⁻	0.907	0.835	0.80
$Na^{+}, HCO_{3}^{-}, H_{2}PO_{4}^{-}$	0.902	0.82	0.775
HO ⁻ , F ⁻ , ClO ₄ ⁻ , HCOO ⁻	0.900	0.81	0.76
K ⁺ , Cl ⁻ , Br ⁻ , I ⁻ , NO ₃ ⁻	0.899	0.805	0.755
Mg ²⁺	0.69	0.52	0.45
Ca ²⁺ , phthalate ²⁻	0.675	0.485	0.405
$CO_3^{2^-}$, oxalate ²⁻	0.663	0.45	0.36
SO4 ²⁻ , HPO4 ²⁻	0.660	0.445	0.355
PO_4^{3-}	0.395	0.16	0.095

Useful Rules to Interpret pH–Rate Profiles

$$\alpha = \left(\frac{\partial \Delta_{\mathbf{r}} G^{\ddagger}}{\partial \Delta_{\mathbf{r}} G^{\circ}}\right)_{p,T} = \left(1 + \frac{\Delta_{\mathbf{r}} G^{\circ}}{4\Delta_{\mathbf{r}} G_{0}^{\ddagger}}\right)/2$$

$$\left(\frac{\partial^{2} \Delta_{\mathbf{r}} G^{\ddagger}}{\partial \left[\Delta_{\mathbf{r}} G^{\circ}\right]^{2}}\right)_{p,T} = \left(\frac{\partial \alpha}{\partial \Delta_{\mathbf{r}} G^{\circ}}\right)_{p,T} = \frac{1}{8\Delta_{\mathbf{r}} G_{0}^{\ddagger}}$$

