INTRODUCTION TO ALGEBRAIC TOPOLOGY

MARTIN CADEK

2. CW-COMPLEXES

2.1. Constructive definition of CW-complexes. C'W-complexes are all the spaces
which can be obtained by the following construction:
(1) We start with a discrete space X°. Single points of X are called 0-dimensional
cells.
(2) Suppose that we have already constructed X"~ !. For every element « of an
index set J,, take a map f, : S"! = 9D" — X" and put

X" =|J(x"tuy, Dy).

Interiors of discs D] are called n-dimensional cells and denoted by e.
(3) We can stop our construction for some n and put X = X™ or we can proceed
with n to infinity and put

X = [OJ X"
n=0

In the latter case X is equipped with inductive topology which means that
A C X is closed (open) iff AN X™ is closed (open) in X" for every n.

Example A. The sphere S" is a CW-complex with one cell €° in dimension 0, one
cell € in dimension n and the constant attaching map f: S*~1 — €°.

Example B. The real projective space RP" is the space of 1-dimensional linear sub-
spaces in R, It is homeomorhic to
S"/(v~ —v) 2 D"/(w~ —w), forwecdD"=S5"""

However, S"~!/(w ~ —w) = RP"*. So RP" arises from RP""' by attaching one n-
dimensional cell using the projection f : S»~' — RP""!. Hence RP" is a CW-complex

with one cell in every dimension from 0 to n.
We define RP* = |J)2 | RP". It is again a CW-complex.

Example C. The complex projective space CP" is the space of complex 1-dimensional
linear subspaces in C*"*!. It is homeomorhic to

S (v = Av) = {(w, /1 = w]?) € C"5 lw]] < 1}/((w,0) = A(w,0), [Jw]| =1)
~ D" /(w ~ Mw; w € OD*")
for all A € C, |A\| = 1. However, 9D?"/(w ~ \w) = CP"'. So CP" arises from CP" "
by attaching one 2n-dimensional cell using the projection f : S?*~t = 9D** — CP" .

Hence CP" is a CW-complex with one cell in every even dimension from 0 to 2n.
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Define CP* = 7, CP". It is again a CW-complex.

2.2. Another definition of CW-complexes. Sometimes it is advantageous to be
able to describe CW-complexes by their properties. We carry it out in this paragraph.
Then we show that the both definitions of CW-complexes are equivalent.

Definition. A cell complez is a Hausdorff topological space X such that
(1) X as a set is a disjoint union of cells e,
X = U €q-
acJ
(2) For every cell e, there is a number, called dimension.
X" = U €a
dimeq<n

is the n-skeleton of X.
(3) Cells of dimension 0 are points. For every cell of dimension > 1 there is a
characteristic map

Yo 1 (D™, 8™ — (X, X"
which is a homeomorphism of int D™ onto e,,.
The cell subcomplex Y of a cell complex X is a union Y = (J ¢ €a s K € J, which

is a cell complex with the same characterictic maps as the complex X.
A CW-complex is a cell complex satisfying the following conditions:

(C) Closure finite property. The closure of every cell belongs to a finite subcomplex,
i. e. subcomplex consisting only from a finite number of cells.

(W) Weak topology property. F' is closed in X if and only if F' N é, is closed for
every a.

Example. Examples of cell complexes which are not CW-complexes:

(1) S% where every point is O-cell. It does not satisfy property (W).

(2) D? with cells €3 = int B3, 2 = {x} for all z € S2. It does not satisfy (C).

(3) X ={1/n; n>1}U{0} C R. It does not satisty (W).

(4) X =U 2 {z € R? ||z —(1/n,0)|| = 1/n} C R?. If it were a CW-complex, the
set {(1/n,0) € R% n > 1} would be closed in X, and consequently in R

2.3. Equivalence of definitions.
Proposition. The definitions 2.1 and 2.2 of CW-complexes are equivalent.

Proof. We will show that a space X constructed according to 2.1 satisfies definition
2.2. The proof in the opposite direction is left as an exercise to the reader.

The cells of dimension 0 are points of X°. The cells of dimension n are interiors of
discs D" attached to X"~ with charakteristic maps

ot (DG, Sa71) = (X" Uy, DG, X
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induced by identity on D!. So X is a cell complex. From the construction 2.1 it
follows that X satisfies property (W). It remains to prove property (C). We will carry
it out by induction.
Let n = 0. Then 0 = 2.
Let (C) holds for all cells of dimension < n — 1. €” is a compact set (since it is an
image of D). Its boundary de” is compact in X"~!. Consider the set of indices

K={p€J; del Nesg#0}.

If we show that K is finite, from the inductive assumption we get that €l lies in a
finite subcomplex which is a union of finite subcomplexes for €3, 8 € K.

Choosing one point from every intersection de], Neg, B € K we form a set A. A is
closed since any intersection with a cell is empty or a onepoint set. Simultaneously, it
is open, since every its element a forms an open subset (for A — {a} is closed). So A
is a discrete subset in the compact set del’, consequently, it is finite. ]

2.4. Compact sets in CW complexes.

Lemma. Let X be a CW-complex. Then any compact set A C X lies in a finite
subcomplex, particularly, there is n such that A C X".

Proof. Consider the set of indices
K={B€eJ; Anes # 0}.

Similarly as in 2.3 we will show that K is a finite set. Then A C | ek €8 and every
ég lies in a finite subcomplexes. Hence A itself is a subset of a finite subcomplex. [

2.5. Cellular maps. Let X and Y be CW-complexes. A map f: X — Y is called
a cellular map if f(X™) C Y™ for all n. In Section 5 we will prove that every map
g : X — Y is homotopic to a cellular map f : X — Y. If moreover, g restricted to a

subcomplex A C X is already cellular, f can be chosen in such a way that f = g on
A.

2.6. Spaces homotopy equivalent to CW-complexes. One can show that every
open subset of R™ is a CW-complex. In [Hatcher|, Theorem A.11, it is proved that
every retract of a CW-complex is homotopy equivalent to a CW-complex. These
two facts imply that every compact manifold with or without boundary is homotopy
equivalent to a CW-complex. (See [Hatcher|, Corollary A.12.)

2.7. CW complexes and HEP. The most important result of this section is the
following theorem:

Theorem. Let A be a subcomplex of a CW-complex X. Then the pair (X, A) has the
homotopy extension property.
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Proof. According to the last theorem in Section 1 it is sufficient to prove that X x
{0} U A x I is a retract of X x I. We will prove that it is even a deformation retract.
There is a retraction 7, : D" x I — D" x {0} U S"™1 x I. (See Section 1.) Then
hp: D" x I x 1 — D" x I defined by

ho(z,8,t) = (1 —t)(x,s) + trp(z, s)
is a deformation retraction, i.e. a homotopy between id and 7,,.

Put Y71 = A Y" = X" U A. Using h, we can define a deformation retraction
H,:Y"x I xI—Y"xI for the retract Y™ x {0} UY" 1 x I of Y x I. Now define
the deformation retraction H : X x I x I — X x [ for the retract X x {0} UA x I
succesively on the subspaces X x {0} x TUY™ x [ x I with values in X x {0}UY™ x I.
For n = 0 put

H(z,s,t) = (z,s) for (z,s) € X x {0} or t € [0,1/2],
H(z,s,t) = Hy(x,5,2(t —1/2)) forx € Y’ and t € [1/2,1].
Suppose that we have already defined H on X x {0} UY™ 1 xI. On X x {0}uY" x [
we put
H(z,s,t) = (z,s) for (z,5) € X x {0} or t € [0,1/2""],
H(z,s,t) = H,(v,s,2" " (t — 1/2"1)) forz € Y™ and t € [1/2"" 1/27],
H(z,s,t) = H(H(z,s,1/2"),t) forx e Y™ and t € [1/2"1].
H : X xIxI — X x1I is continuous since so are its restrictions on X x {0} x ITUY"™x I x [
and the space X x I x [ is a direct limit of the subspaces X x {0} x TUY™ x I x [.

N

\
X x{0juY?xI

N
\

X x{0juytxT
X x1
X x{0}UuY®xIr
X x{0}UAxI
t=0t=5 t=1 t=1 t=1

F1GURE 2.1. Image of H depending on t

2.8. First criterion for homotopy equivalence.

Proposition. Suppose that a pair (X, A) has the homotopy extension property and
that A is contractible (in A). Then the canonical projection q : X — X/A is a
homotopy equivalence.
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Proof. Since A is contractible, there is a homotopy h : A x I — A between ids and
constant map. This homotopy together with idy : X — X can be extended to a
homotopy f : X x I — X. Since f(A,t) C A for all t € I, there is a homotopy
f:X/Ax T — X/Asuch that the diagram

XxI—1 - x

commutes. Define g : X/A — X by ¢g([z]) = f(z,1). Then idx ~ g o g via the

homotopy f and idx/4 ~ q o g via the homotopy f. Hence X is homotopy equivalent
to X/A. O

Exercise A. Using the previous criterion show that $%/5° ~ S§% v St

Exercise B. Using the previous criterion show that the suspension and the reduced
suspension of a CW-complex are homotopy equivalent.

2.9. Second criterion for homotopy equivalence.

Proposition. Let (X, A) be a pair of CW-complexes and let Y be a space. Suppose
that f,g : A — Y are homotopic maps. Then X Uy Y and X U, Y are homotopy
equivalent.

Proof. Let F': Ax I — Y be a homotopy between f and g. We will show that X U;Y
and X U, Y are both deformation retracts of (X x I) Up Y. Consequently, they have
to be homotopy equivalent.
We construct a deformation retraction in two steps.
(1) (X x{0})U;Y is a deformation retract of (X x {0} UA X I)UpY.
(2) (X x{0}UA X I)UpY is a deformation retract of (X x I) Up Y.

g

Exercise. Let (X, A) be a pair of CW-complexes. Suppose that A is a contractible
in X, i. e. there is a homotopy F' : A — X between idx and const. Using the first
criterion show that X/A = X UCA/CA ~ X UCA. Using the second criterion prove
that X UCA ~ X V SA. Then

X/A~XVSA.
Apply it to compute S"/S*, i < n.
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