
ESTADISTICA (2010), 62, 179, pp.
c©Instituto Interamericano de Estad́ıstica

AN INTRODUCTION OF BAYESIAN DATA
ANALYSIS WITH R AND BUGS: A SIMPLE

WORKED EXAMPLE

PABLO E. VERDE
Coordination Center for Clinical Trials, University of Duesseldorf,

Moorenstr. 5, D-40225, Duesseldorf, Germany
PabloEmilio.Verde@uni-duesseldorf.de

ABSTRACT

This article introduces the application of R and BUGS in Bayesian data analysis,
mainly the basic model set up, analyzing simulation output, model checking,
dealing with missing data and with the data generating process. The presentation
is written informally omitting most of the technical details and concentrating on
the use of these powerful statistical computing languages in practice.

Key words

Bayesian modeling, binary data, posterior prediction, missing data, R, BUGS.

RESUMEN

Este articulo es una introducción al uso de R y BUGS en analisis Bayesiano
de datos. Principalmente, la prepareción básica del modelo, el analisis de los
resultados de simulación, el diagnóstico del modelo, el modelaje de datos perdidos
y del proceso de generación de datos. La presentación es informal donde omitimos
resultados técnicos y nos concentramos en el uso de estos poderosos lenguages
estad́ısticos.

Palabras clave

Modelación Bayesiana, datos binarios, prediction a posteriori, datos faltantes, R,
BUGS.

1. Introduction

Bayesian models are very attractive when we have to combine multiple sources
of information in a coherent statistical model. That makes this approach useful
to those that have to face complexities in data analysis including: repeated data

Propietario
Texto escrito a máquina

Propietario
Cuadro de texto
ESTADÍSTICA (2010), 62, 179, pp. 21-44© Instituto Interamericano de Estadística

2

structures, very large multidimensional data, multi-level data, missing data, com-
plex dependent data (e.g., spatial-temporal). The aim of this paper is to give an
elementary introduction to Bayesian modeling by bringing together two statisti-
cal software R from the R Development Core Team (2010) and BUGS (Bayesian
inference Using Gibbs Sampling) as described in Spiegelhalter, Thomas, and
Best (2004).

R is an open-source and freely available statistical software implementing the
S language (Becker and Chambers 1984; Becker, Chambers, and Wilks 1988;
Chambers and Hastie 1992; and Chambers 1998). R provides a general language
for data analysis supported by techniques of data management, powerful graph-
ics, numerical computations, model fitting, computer simulation, and much other
functionality. R is highly portable and runs in different operating systems includ-
ing Unix, Linux, Windows, and Mac. A great feature of R is its extensibility; the
system has been enriched with thousands of software packages built on R making
the system a unique platform for data analysis.

BUGS is a versatile computer language for analyzing complex statistical mod-
els using Markov Chain Monte Carlo (MCMC) techniques. Starting in the late
1980s the BUGS project was pioneer software development in statistics by combin-
ing ideas of artificial intelligence (e.g., declarative computer language, graphical
representations, automatic-proof theorems) and multidimensional computer sim-
ulation techniques (e.g., Gibbs sampling and Metropolis sampling) to routinely
solve complicated Bayesian computations. BUGS has been central in applications
of Bayesian ideas over the last 20 years, see for example Lunn, Spiegelhalter,
Thomas, and Best (2009).

In this paper we show how to setup a model in BUGS, call BUGS from R with the
package R2WinBUGS (Sturtz, Ligges, Gelman 2005) analyze simulation outputs,
model checking, and dealing with missing data. The structure of the paper is as
follows. In Section 2 we present a running example that is used to illustrate a
number of ideas and computational techniques. In Section 3 we present a brief
introduction to Bayesian data analysis. Section 4 is the main part of this tutorial
where a full example is worked out in BUGS and R. Bayesian model checking is
presented in Section 5 and handling missing data in Section 6. Finally, Section 7
presents a summary with further directions in this area.

2. Running example: Real versus fake coin flips

Gelman and Nolan (2002, page 106) present an interesting example that we bor-
row to illustrate a series of concepts in Bayesian data analysis. One group of
students is instructed to flip a coin 100 times and record results writing heads as
“1” and tails as “0”. The second group is instructed to create a sequence of 100
“0”s and “1”s that are intended to mimic results of flipping a coin 100 times. It is
counterintuitive that sequences of truly coin flips may produce long runs of heads
and tails. Usually, people believe that these sequences should produce haphaz-
ard patterns with frequent but not regular alternations between heads and tails.

Propietario
Cuadro de texto
ESTADÍSTICA (2010), 62, 179, pp. 21-44

Propietario
Cuadro de texto
22

3

Therefore, we may expect that students in the second group may bias results
with this stereotype in mind. These two sequences are entered in the R console
as follows.
Sequence 1
y.true <-c(0,0,1,1,1,0,0,0,1,1,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,

0,1,0,0,0,1, 0,0,0,0,0,0,0,0,1,0,0,1,1,0,0,1,0,1,0,
1,1,0,0,0,0,1,1,1,1,1,1,0,0,1,1,0,0, 0,1,0,1,0,1,1,
0,0,1,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,1,1,1,1,0,0,1)

Sequence 2
y.fake <-c(0,1,0,0,0,1,0,1,0,0,1,1,0,0,0,1,0,1,0,0,1,1,1,0,1,

0,0,1,1,0,0,0,1,1,1,1,0,1,0,0,0,1,1,1,0,1,0,0,0,1,
1,0,0,0,1,1,0,1,1,1,1,0,0,0,1,0,0,1,0,1,1,0,1,1,0,
1,1,1,0,0,0,1,1,0,0,1,0,0,0,1,0,0,1,0,0,0,0,1,0,0)

Given that the number of trials in these sequences are fixed by design we can
apply a Fisher’s test to test difference of rates between sequences
> fisher.test(y.true , y.fake)

Fisher ’s Exact Test for Count Data

data: y.true and y.fake
p-value = 0.2203
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
0.2335482 1.4352513

sample estimates:
odds ratio
0.5865073

A p-value of 0.2203 shows that we can not distinguish between head’s rates of
these sequences. That is, apparently the students did a good job in cheating coin
flips. Later on in Section 5 we will see that this is a misleading result.

Large part of our applied statistical work is made by statistical procedures like the
Fisher exact test. In this tutorial we move away from this procedural statistical
approach and we state us closer to the dynamic of the data analysis where sta-
tistical models are inherent provisional, after the model has been fit, one should
look their results and see if it makes sense. In this way Bayesian and classical
statistical modeling are very similar in their application.

3. Background in Bayesian modeling

Bayesian data analysis is an eclectic approach to applied statistics, where Bayesian
inference is used to fit models to data and classical statistical is borrowed for model
checking and model selection. In this section we present a brief introduction to
these ideas and we point out some further references.

Propietario
Cuadro de texto
23

Propietario
Cuadro de texto
VERDE: An introduction of Bayesian data analysis with R and Bugs...

4

3.1 Bayesian statistical inference

Suppose that yT = (y1, y2, . . . , yn) is a vector of n observations that we are going
to use to draw inference in a particular statistical problem. Bayesian modeling
starts as classical statistics by specifying the probability distribution p(y|θ) which
depends on the unknown quantities θT = (θ1, . . . , θk).

Bayesian statistics generalizes classical statistics by regarding θ as a realization
of a random variable instead of a fixed quantity and by introducing a prior dis-
tribution p(θ). The prior distribution p(θ) encapsulates what is known about θ
independently of the data y. It can be constructed by using empirical informa-
tion independent of y, by subjective prior beliefs about θ or can be handled just
as a component introduced by the data modeler. In any case, it is intrinsically
provisional, once the data y is observed the prior is updated to the posterior of
θ by using the Bayes’ theorem

p(θ|y) ∝ p(y|θ)p(θ).

The need of introducing p(θ) in statistical inference is a point of discord between
statisticians. In particular the issue of handling at the same level potentially sub-
jective information with empirical evidence. Once the prior is specified and the
posterior is calculated, Bayesian inference automatically ensure important infer-
ential properties. The data enters in the posterior only through the likelihood
p(y|θ), then the sufficient principle and the strong likelihood principle are satis-
fied. Because the posterior density p(θ|y) is the distribution of θ given the whole
data, then any ancillary statistic to the problem is held automatically.

From the practical point of view, the advances of the MCMC techniques and their
implementation in statistical software have shown the success of Bayesian meth-
ods in several areas of statistics, including applications of hierarchical models,
handling missing data, modeling large dimensional data, and so on. In practical
terms, the advantage of learning and using Bayesian methods usually overcome
the costs of having to defend this approach.

3.2 Posterior predictions and model checking

The fact that using Bayesian inference automatically incorporates nice inferential
properties into the model does not protect us to go very wrong in a particular
application. For this reason, the use of techniques of model checking and model
criticism are fundamental in Bayesian data analysis. In this way, we further
generalize the Bayesian paradigm by extending the posterior p(θ|y) ∝ p(y|θ)p(θ)
to the full statistical model

p(θ,yrep|y) ∝ p(y|θ)p(θ)p(yrep|θ),

Propietario
Cuadro de texto
24

Propietario
Cuadro de texto
ESTADÍSTICA (2010), 62, 179, pp. 21-44

5

where yrep is a replicated or predicted data set of the same size and shape as the
observed data y. In a typical application, yrep is simulated from p(yrep|y) the
predictive posterior distribution of yrep, which is approximated by MCMC. Model
checking can then be performed by direct comparison between y and yrep.

To assess model misfit particular measures of discrepancy between y and yrep

have to be defined. The general approach is to use antisymmetric discrepancy
functions of the data and the replications of the form D(y,yrep). These discrep-
ancy functions are antisymmetric in the sense that if y is swapped with yrep then
the sing of D must be changed. The advantage of using antisymmetric discrep-
ancies rather than test statistics is that the discrepancies are always compared to
zero, that simplifies visual model checks as well. Examples of model checking by
applying these techniques are presented in Section 5.

The use of simulated data from a model for model checking has a long tradition
in data analysis, see for example Bush and Mosteller (1955, Chapter 6). Posterior
predictive assessment was introduced by Guttman (1967), further developments
are given by Box (1980), applications are given by Rubin (1981), a formaliza-
tion is given by Rubin (1984); West (1986) and Gelfand, Dey, and Chang (1992)
also present posterior predictive approaches to model evaluation. For an excel-
lent introduction to Bayesian model checking see Gelman, Carlin , Stern and
Rubin (2004, Chapter 6) and Gelman and Hill (2007, Chapter 24).

3.3 Bayesian p-values

A Bayesian p-value is a posterior probability under a particular modeling assump-
tion. Following the strategy of using antisymmetric discrepancy functions of the
form D(y,yrep), then

p-value(y) = Pr[D(y,yrep) > 0|y].

In other words a Bayesian p-value is a posterior probability that a certain antisym-
metric function exceeds zero. It quantifies how much a particular model deviates
from some data features. These results are used in practice to understand the
deficits of a model fitted.

3.4 Missing data and data collection process

Another generalization of the Bayesian paradigm is the incorporation of the data
collection mechanism into the model. The posterior is extended from p(θ|y) to
p(θ, φ|y, I), where I represents the information of which data points are actually
observed, and φ are parameters describing the design of the data-collection and
recording process.

Including the data-structure I in the model allows easily model missing data,
censor data, truncated data and so on. In general, a data-collection process is

Propietario
Cuadro de texto
VERDE: An introduction of Bayesian data analysis with R and Bugs...

Propietario
Cuadro de texto
25

6

“ignorable” if p(θ, φ|y, I) = p(θ|y)p(φ|I), that is if the data structure can be ig-
nored. For example, randomized data collection is an example of data collection
which is ignorable. Clearly, by understanding “ignorability” we can build non-
ignorable models for example by adding covariates which can explain the data
collection process (e.g., lack of complaint or drop-outs in clinical trials) or mod-
eling a priory the dependence between θ and φ. In Section 6.1 and Section 6.2
we illustrate these concepts by implementing two toy examples in R.

4. Bayesian analysis with R and BUGS

4.1 Getting started with R and BUGS

In this section we assume that you have installed the last version of R and you
are able to do most of the basic actions in R, such as simple statistical analysis,
loading data from different formats, build basic graphics, and so on. To follow
the statistical analysis of this section you have to setup your computational en-
vironment as follows.

1. Install the last version of WinBUGS (1.4.3) from
http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml

and follow the instructions at the “Quick Start” section, which are self-
explanatory.

2. Within the R’s console install the package R2WinBUGS and load it.
> install.packages(‘‘R2WinBUGS ’’, dependencies = TRUE)
> library(R2WinBUGS)

3. Setup your working directory and the WinBUGS directory, e.g.
> bugsdir <- ‘‘C:/ Programs/WinBUGS14 ’’
> workdir <- ‘‘C:/bayesian -examples ’’

4.2 Writing the model in BUGS language

Let us start by modeling the y.true sequence and let us assume that these values
can be modeled with a Binomial distribution. Suppose we observe y heads out
of n trials assuming trials are independent, with common unknown heads rate θ,
that leads to a binomial likelihood

p(y|n, θ) =

(
n
y

)
θy(1− θ)n−y ∝ θy(1− θ)n−y.

We consider the response rate θ to be a continuous parameter, i.e., we need to give
a continuous prior distribution p(θ). To represent external evidence that some

Propietario
Cuadro de texto
26

Propietario
Cuadro de texto
ESTADÍSTICA (2010), 62, 179, pp. 21-44

7

response rates are more plausible than others, it is mathematical convenient to
use a Beta(a, b) prior distribution for θ

p(θ) ∝ θa−1(1− θ)b−1

Combining this prior with the binomial likelihood gives a posterior distribution

p(θ|y, n) ∝ p(y|θ, n)p(θ)

∝ θy(1− θ)n−y

= θy+a−1(1− θ)n−y+b−1

∝ Beta(y + a, n− y + b).

This Bayesian model has a simple solution and simulation techniques to approxi-
mate p(θ|y) are not necessary, however, it is a good starting point for illustration.
In Section 6 we present an example with a non-conjugate prior where computa-
tional power is indispensable to approximate p(θ|y).

We write our Bayesian model in BUGS language and we save it to the text file
coin-flips.txt.
#Binary example: conjugate analysis
model
{

y ~ dbin(theta , n) # model for y
theta ~ dbeta(a, b) # prior for theta
y.pred ~ dbin(theta , n) # making prediction
odds <- theta/(1- theta) # odds of theta

}

In BUGS language every model specification starts with the word model and the
syntax of the model is written between the brackets {}. BUGS is a declarative
computer language where the order of the statements does not influence the in-
terpretation of the model. In our example, we specify that y follows a Binomial
distribution with rate theta and index n. In the second line, we define the prior
distribution of theta by saying that theta follows a Beta distribution with pa-
rameters a and b. The third line shows an easy way to predict data in BUGS,
that is by defining a new random variable which follows the same distribution as
the data. Finally, the last line defines the odds ratio of theta.

In BUGS language every object corresponds to a node in a DAG (Directed Acyclic
Graph), these nodes can be:

• Modeled data or stochastic nodes, which are those data objects that we
assign probability distribution with the ~ symbol, e.g., y in our code.

• Unmodeled data or constants nodes. These are data without assigned dis-
tribution in the BUGS code, e.g., n, a, and b.

Propietario
Cuadro de texto
VERDE: An introduction of Bayesian data analysis with R and Bugs...

Propietario
Cuadro de texto
27

8

• Parameters, these are stochastic nodes that represent unknown quantities
in our model, e.g., theta and y.pred.

• Derived parameters or logical nodes : These are objects that are defined
deterministically using <-, in our example odds is a logical node.

• Loops or plates : These are a set of replicated model components in a for
loop. For example in Section 5 we use a for loop in our model specification.

Figure 1. Directed acyclic graph representation of the binomial model with a beta prior

theta

ba

y.pred y odds

n

Nodes in a DAG are linked by arrows or edges, Figure 1 shows the DAG rep-
resentation of our model. Ovals represent stochastic nodes, constant nodes are
represented by rectangles, single edges represent stochastic dependency and dou-
ble edges logical nodes. Internally, BUGS uses this graph with an automatic
theorem proof algorithm to factorize the posterior in a set of conditional distri-
butions. These distributions are those that are used for Gibbs sampling. These
theoretical computations are invisible for the BUGS user, however, it is a great
advantage to be able to draw the DAG of the model that we are intended to fit.

4.3 Data, parameters, and initial values

Before calling BUGS from R, we need to define the data, the parameters and the
initial values in R.
n <- length(y.true)
y <- sum(y.true)

Propietario
Cuadro de texto
28

Propietario
Cuadro de texto
ESTADÍSTICA (2010), 62, 179, pp. 21-44

9

a <- 0.5
b <- 0.5
data1 <- list (‘‘n’’, ‘‘y’’, ‘‘a’’, ‘‘b’’)
par1 <- c(‘‘theta ’’, ‘‘y.pred ’’, ‘‘odds ’’)

Here our data corresponds to the number of observations n, the number of heads
in 100 flips y and the parameters of the Beta prior distribution a and b. The
unknown parameters in this analysis are the true rate theta the predictive number
of heads out of 100 in future trials y.pred and the odds of theta.

In this simple example let BUGS to use random initial values for theta and
y.pred. It is, however, a good practice to take control on the initial values to
avoid BUGS crashes due to numerical overflow. To work with 3 chains for each
model parameter we generate their initial values by combining three list() of
values in a single list object in R as follows.
inits1 <- list(list(theta = 0.5, y.pred = 10),
list(theta = 0.1, y.pred = 50),
list(theta = 0.9, y.pred = 80))

This initial values are completely arbitrary and taking far away to check conver-
gence issues. Alternately, we can use random generating values in R as well.

4.4 Calling BUGS from R

The function bugs() form the R2WinBUGS package is used to link R to BUGS,
the value of this function is an R object that collects BUGS computations. The
following runs the coin-flips.txt model in R.
m1 <- bugs(data1 , inits = NULL , par1 , ‘‘coin -flips.txt ’’,

n.chains = 3, n.iter = 2000, n.thin = 1, n.burnin =
floor(n.iter /2), bugs.directory = bugsdir ,
working.directory = workdir , clearWD = TRUE , debug =
TRUE)

In this example we use a series of options in the bugs() function by defining
different argument values. For example, inits=inits1 indicates the initial values
used for computations, alternatively setting inits=NULL leaves BUGS to generate
random initial values; n.chains=3 means that we run 3 independent chains, this
can be used for convergence assessment; n.iter=2000 specifies the number of
iterations, n.thin=1 means that we take every simulated value, e.g., n.thin=5
means that we take one every 5 values; n.burnin=floor(n.iter/2) defines the
length of the burn in period, i.e. the number of iterations that we are going to
discard, as default half of the simulating values are discard; debug=TRUE shows
the BUGS outputs on the log-file and hang up the batch in WinBUGS in a way
that we can check if BUGS syntaxes work correctly, then WinBUGS will wait for
our OK to send results back to R.

We inspect the results using the function print() in R.

Propietario
Cuadro de texto
VERDE: An introduction of Bayesian data analysis with R and Bugs...

Propietario
Cuadro de texto
29

10

> print(m1, digits.summary = 3)

Inference for Bugs model at ‘‘coin -flips.txt ’’, fit using
WinBUGS , 3 chains , each with 4000 iterations (first
2000 discarded), n.thin = 5 n.sims = 1200 iterations
saved

mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff
theta 0.38 0.04 0.28 0.35 0.38 0.41 0.47 1.00 1200

y.pred 38.30 6.66 26.00 34.00 38.00 43.00 52.00 1.00 670

odds 0.62 0.12 0.40 0.54 0.62 0.70 0.88 1.00 1200

deviance 5.93 1.33 5.00 5.09 5.40 6.20 9.78 1.00 820

For each parameter , n.eff is a crude measure of effective
sample size , and Rhat is the potential scale reduction
factor (at convergence , Rhat =1).

DIC info (using the rule , pD = Dbar -Dhat)
pD = 0.9 and DIC = 6.9
DIC is an estimate of expected predictive error (lower

deviance is better).
>

The print() output contains the following information: posterior means, stan-
dard deviations and the 5 quantiles of the posterior distribution of each parameter
in the model. The last two columns Rhat and n.eff are used for convergence
checking. Rhat is the ratio between a measure of variability within and between
chains, a value of Rhat close to 1 indicates satisfactory convergence (Gelman and
Rubin 1992; Brooks and Gelman 1997). The n.eff refers to the effective number
of iterations adjusted by the autocorrelation between simulated values. To have
a good approximation of the posteriors quantiles we need at least 2000 effective
number of iterations. Very low values of n.eff compared to the total number of
simulations may indicate poor convergence induced by a drift in the simulated val-
ues. The value of DIC is an estimation of the predictive error of the model and pD
is an estimation of the effective number of parameters in the model (Spiegelhalter,
Best, Carlin, and van der Linde 2002).

4.5 Calling BUGS from R in a Linux operating system

Although BUGS is a Windows application, it is possible to run BUGS from R in
UNIX operating systems, e.g., Linux, BDS, and Mac OS X. Here we present a
simple setup to run BUGS under a Linux, which can be use in other systems as
well.

1. You need to install wine a Windows emulator http://www.winehq.org/.
This program makes possible to run Windows applications under Linux.

Propietario
Cuadro de texto
ESTADÍSTICA (2010), 62, 179, pp. 21-44

Propietario
Cuadro de texto
30

11

2. WinBUGS has to be installed under wine.

3. Clearly your working directory will have a Linux type of direction, e.g.,
> workdir <- ‘‘/home/stat -lab/bayesian -examples ’’

4. To run BUGS we need to address where the executable file is located, e.g.,
> bugsdir <- ‘‘/home/stat -lab/.wine/dosdevices/c:/

Programs/WinBUGS14 ’’

5. The bugs function works as usual, but you have to specify the argument
useWINE=T.

4.6 Working with the BUGS’ results

The R object m1 generated in this analysis belong to the class bug and can be
further analyzed in R. For example, we can see the class, names, and extract
values from this object in R.
> ### obtaining results from the object ‘‘m1 ’’
> class(m1)
[1] ‘‘bugs ’’
> names(m1)
[1] ‘‘n.chains ’’ ‘‘n.iter ’’ ‘‘n.burnin ’’ ‘‘n.thin ’’
...

> m1$pD
[1] 0.926
> m1$n.chains
[1] 3

The component sims.array[] in m1 is a three dimensional array with the output
of the simulated values. The first dimension corresponds to the iterations, the
second to chain and the third to parameters’ names. For example, to extract the
first 10 simulated values of both parameters from chain number 1 we use:
> m1$sims.array [1:10,1, ‘‘theta ’’]
[1] 0.3964 0.3692 0.5159 0.3611 0.3671 0.4680 0.4466

0.3351 0.3270 0.3801
> m1$sims.array [1:10,1, ‘‘y.pred ’’]
[1] 36 31 49 42 35 45 44 35 41 38

>

These values are used to approximate the parameters’ posteriors in the model.
For example, to approximate posterior percentiles of odds.theta:
> odds.theta <- m1$sims.array[,,‘‘odds ’’]
> quantile(odds.theta , prob=c(0.025 , 0.5, 0.975))

2.5% 50% 97.5%
0.4023825 0.6222500 0.8872950
>

To visualize these posteriors in R:

Propietario
Cuadro de texto
VERDE: An introduction of Bayesian data analysis with R and Bugs...

Propietario
Cuadro de texto
31

12

Figure 2. Results of MCMC computations. Left panel: Posterior distribution of θ rate
of heads in flipping a fair coin. Right panel: Posterior of the odds θ/(1− θ)

Posterior of theta

theta.sim

De
ns

ity

0.25 0.35 0.45 0.55

0
2

4
6

8

Posterior of odds theta

odds.theta

De
ns

ity

0.4 0.6 0.8 1.0 1.2

0.0
0.5

1.0
1.5

2.0
2.5

3.0

> theta.sim <- m1$sims.array[,,‘‘theta ’’]
> par(mfrow=c(1,2))
> hist(theta.sim , breaks = 30, prob = TRUE ,

main=‘‘Posterior of theta ’’, col=‘‘magenta ’’)
> curve(dbeta(x, shape = 0.5 + y, shape2 = 0.5 + n -y),

from = 0, to = 1, lwd=2, add = TRUE)
> hist(odds.theta , breaks = 30, prob = TRUE ,

main=‘‘Posterior of odds theta ’’, col=‘‘lightblue ’’)
> par(mfrow=c(1,1))

An alternative way to access m1 objects is by using the attach.bug() function
and calling the simulation arrays by the parameter names, e.g.,
> attach.bugs(m1)
> quantile(theta)

0% 25% 50% 75% 100%
0.2147 0.3506 0.3836 0.4125 0.5245
>

4.7 Checking convergence

The fact that after running a MCMC for a while we get convergence, may be at
least in theory an illusion. We need to be protected against this issue by checking
convergence.

Propietario
Cuadro de texto
ESTADÍSTICA (2010), 62, 179, pp. 21-44

Propietario
Cuadro de texto
32

13

The R’s package coda (Plummer, Best, Cowles, and Vines 2010) provides a flexible
functionality to check convergence and visualize MCMC outputs. This function-
ality includes: plots of sample traces for each parameter in each chain, kernel
density estimates for each variable, auto-correlation and cross-correlations be-
tween parameters, and plots of Gelman and Rubin diagnostic versus final iteration
number.

To analyze the MCMC output with the coda package we need to run the bugs()
function with the argument codaPkg=TRUE. The resulting object will lose the
“bugs” class attribute and it will be a character class object which gives the
direction where the MCMC output files have been saved. These output files have
to be read from R and converted to a list.mcmc format. The following code
shows this process.
> m1<-bugs(data1 ,
+ inits=inits1 ,par1 ,‘‘coin -flips.txt ’’,n.chains = 3,
+ n.iter = 4000, n.thin=5, bugs.directory = bugsdir ,
+ working.directory = getwd (),
+ clearWD=TRUE , debug=TRUE ,
+ codaPkg=TRUE)
> class(m1)
[1] ‘‘character ’’
> m1
[1] ‘‘C:/bayesian -examples/coda1.txt ’’
[2] ‘‘C:/bayesian -examples/coda2.txt ’’
...
> library(coda)
> m1.coda <- read.bugs(m1)
...
Abstracting theta ... 400 valid values
Abstracting y.pred ... 400 valid values
> class(m1.coda)
[1] ‘‘mcmc.list ’’
>

The “m1.coda” object can be used to display MCMC convergence diagnostics, for
example we can see how these three chains are mixing and their autocorrelation
functions with
> xyplot(m1.coda)
> acfplot(m1.coda)

The resulting plots are displayed in Figure 3 and Figure 4, both figures indicate
good convergence in this example.

We have seen in Section 4.4 that a quick convergence check is provided by the
Rhat statistics, which measures the variability within and between chains, where
a value of Rhat close to 1 indicates satisfactory convergence.

Propietario
Cuadro de texto
VERDE: An introduction of Bayesian data analysis with R and Bugs...

Propietario
Cuadro de texto
33

14

Figure 3. Results of MCMC computations: traces for each parameter by running three
Markov chains. These results show a clear convergence for all model parameters

iterations

5
10

15

0 100 200 300 400

deviance

0.4
0.6

0.8
1.0

odds

0.3
0.4

0.5

theta

20
30

40
50

60

y.pred

Figure 4. Results of MCMC computations: autocorrelation functions for each parame-
ter in each chain. Different colors are used to display three chains

Lag

Au
toc

or
re

lat
ion

0.0

0.2

0.4

0.6

0.8

0 5 10 15 20 25

●

●
●

●

●

● ●

● ●
● ●

●

●
●

● ●
●

●

●

●
●

●
●

● ●
●

●

●

●
●

● ●

●

●
● ●

●

●
●

●

●

●

● ●
●

●
●

●
● ●

● ●
●

●

●

● ● ● ●
● ● ● ●

●

●

●

● ● ●
●

●
● ● ●

●
●

●
● ●

●
●

deviance
●

● ●

● ●
●

●

●

●
●

● ●

●

● ●
●

●

●

● ●

●
●

● ●

●

●

●

●

●
●

● ● ● ●
● ●

● ●

●

●
●

● ● ● ●
●

●
●

●
●

●

●

●

●

●

●
●

●

● ● ● ● ●
●

●

●

●

●

●

●

●
●

● ●
●

●
●

●

●
●

●

odds

●

● ●

● ●
●

●

●

● ●

● ●

●

● ●
●

●

●

● ●

● ●

● ●

●

●
●

●

● ●

●
●

●
●

● ●
● ●

●
●

●
● ● ● ●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
● ● ●

●
● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

theta

0 5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

●

●

●
● ● ● ●

●
● ●

●

●

●

● ●
● ●

●

●

●

● ●

●
●

● ●
●

●

●

●
● ● ●

●
●

●
● ● ●

●
● ● ●

● ●

● ●

●

●
● ●

● ●
●

●

● ● ●
●

● ●
●

●

●
● ● ●

●

●

●

●

●

●
●

● ●
●

●

●

● ●

y.pred

Propietario
Cuadro de texto
34

Propietario
Cuadro de texto
ESTADÍSTICA (2010), 62, 179, pp. 21-44

15

The function gelman.plot() in coda produces a sensitivity analysis of Rhat by
iteration number. This is calculated by rolling the Rhat for a predefined window
of iterations (with default window of bin.width = 10). In R use
> gelman.plot(m1.coda , ylim=c(0.8 ,1.3))

which produces the graph displayed in Figure 5. This graph clearly shows con-
vergence.

Figure 5. Convergence results of MCMC computations: each panel shows the Rhat
statistics and its 95% CI (red line) vs number of iterations. Values close to 1 indicate
a good convergence

450 500 550 600 650 700 750 800

0.8
1.0

1.2

last iteration in chain

sh
rin

k f
ac

tor

median
97.5%

deviance

450 500 550 600 650 700 750 800

0.8
1.0

1.2

last iteration in chain

sh
rin

k f
ac

tor median
97.5%

odds

450 500 550 600 650 700 750 800

0.8
1.0

1.2

last iteration in chain

sh
rin

k f
ac

tor

median
97.5%

theta

450 500 550 600 650 700 750 800

0.8
1.0

1.2

last iteration in chain

sh
rin

k f
ac

tor

median
97.5%

y.pred

5. Posterior predictive simulation and model checking

The predictive posterior distribution contains useful information for model check-
ing. This distribution is conditional independent to the observed data given θ
and can be used for model validation. For example, we can define a simple dis-
crepancy function D(y,yrep) = y − yrep and calculate its Bayesian p-value. It is
interesting to calculate this p-value for the fake data y.fake to see if these data
can be predicted under the fitted model. These tail probabilities are calculated
in R with
> y.pred.sim <- m1$sims.array[,, ‘‘y.pred ’’]
> sum(y.pred.sim -sum(y.true) > 0)/length(y.pred.sim)
[1] 0.44
> sum(y.pred.sim -sum(y.fake) > 0)/length(y.pred.sim)

Propietario
Cuadro de texto
VERDE: An introduction of Bayesian data analysis with R and Bugs...

Propietario
Cuadro de texto
35

16

[1] 0.141

These values show that fake data is less usual than the actual observed data.

One way to further investigate model adequacy is by defining some data features
that we expect from real data and assessing their discrepancy from the simulated
predictive data.

For binary data, we define two interesting data features, one is the number of
switches between 0’s and 1’s and the other is the length of the longest run, i.e.
the longest sequence of 1’s or 0’s. The following R function calculates these two
data features.
check.seq <- function(y.star){

n <- length(y.star)
number of switches
n.switch <- (n-1) - sum(y.star [1:(n-1)]==y.star [2:n])
maximum length
L <- NULL
k <- 1
for(i in 2:n){

if(y.star[i-1]==y.star[i]) k <- k + 1
else {L <- c(L, k)
k <- 1}

}
maxL <- max(L)
return(c(n.switch , maxL))

}

Applying the function check.seq() to the true and fake sequences yields.
> check.seq(y.fake)
[1] 52 4
> check.seq(y.true)
[1] 43 8

Interesting, the longest run in the fake data is half of the longest run in true data.
The true data has a few long sequences of 0’s and 1’s, with the longest one being
a sequence of 8 zeros. This is typical in real coin flips but counter intuitive to the
students who emulated real data.

To quantify and visualize these discrepancy measures, we use theta.sim, the
values sampled from θ’s posterior, and apply the check.seq() function to the
predictive values.
B <- length(theta.sim)
res1 <- matrix(rep(0, B*2), nrow = B, ncol = 2)
for(b in 1:B)
{ # Simulate predictive data

y.star <- rbinom(n = 100, size = 1, prob = theta.sim[b])
Summary number of switches and longest run
res1[b,] <- check.seq(y.star)

Propietario
Cuadro de texto
36

Propietario
Cuadro de texto
ESTADÍSTICA (2010), 62, 179, pp. 21-44

17

}
#plot for results
plot(jitter(res1 [,2]) ~ jitter(res1 [,1]), cex =0.08,
xlab = ‘‘Number of switches ’’, ylab = ‘‘Length of the

longest run ’’,
main=‘‘Predictive features of flipping a fair coin 100

times ’’)

text(52, 4, ‘‘y.fake ’’, cex =1.5)
text(43, 8, ‘‘y.true ’’, cex =1.5)

Figure 6 shows the resulting plot where each point corresponds to a combination
of switches and longest run for each simulated predictive sequence. In the plot
we located the corresponding values for y.true and y.fake. To quantify devi-
ations of these features from the true and fake data, we calculate marginal tail
probabilities as follows.

Figure 6. Predictive posterior features of flipping a fair coin 100 times. The horizontal
axis corresponds to the number of switches between heads and tails and the vertical axis
the longest run of heads or tails. The scatter plot is built by sampling 100 sequences
of binary outcomes from a Bernoulli process where the rate of 1’s is sampled from the
posterior distribution of θ the rate of heads

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

30 40 50 60

5
10

15
20

Predictive features of flipping a fair coin 100 times

Number of swiches

Le
ng

th
of

the
 lo

ng
es

t r
un

y.fake

y.true

number of switches
> sum(res1[,1] -52 >= 0)/B # fake data
[1] 0.1633
> sum(res1[,1] - 43 >= 0)/B # true data
[1] 0.77

Propietario
Texto escrito a máquina

Propietario
Cuadro de texto
37

Propietario
Cuadro de texto
VERDE: An introduction of Bayesian data analysis with R and Bugs...

18

>
#length of the longest run
> sum(res1[,2] - 4 <= 0)/B # fake data
[1] 0.0117
> sum(res1[,2] - 8 <= 0)/B # true data
[1] 0.578

Clearly the length of the longest run presents the mayor feature deviation. The
fake data has a Bayesian tail probability of 0.0117 compared to a tail probability
of 0.578 for the true data.

6. Missing data

6.1 Ignorable missing data mechanism

Missing data is one of the mayor issues of concern in applied data analysis. In
this section, we present an example where the missing mechanism can be regard
as ignorable. In this situation, BUGS directly imputes missing values in each
iteration by using their predictive posterior values. That is, BUGS automatically
extends p(θ|y, I) to p(θ,ymiss|y, I) where ymiss are the set of observations with
missing data and I is an indicator vector pointing to the values that are missing.

Now, let’s generate some missing data at random in our example.
missing flips
set.seed (123)
index <- sample (1:100 , 40, replace=FALSE)
index
y.miss <- y.true
y.miss[index] <- NA

We use this example to illustrate the application of a non-conjugate prior for
θ, where the posterior cannot be handle in a close form. We transform θ by
φ = logit(θ), where logit(x) = ln(x/(1 − x)), and we use for a prior of φ a t-
distribution with mean equal to 0, variance equal to 1000 and with 4 degrees of
freedom. In BUGS, we handle this model as follows.
#Binary example: missing data analysis
#Non -conjugate model with t -distribution prior
model
{
for(i in 1:n){

y.miss[i] ~ dbern(theta) # model for y
}
logit(theta) <- phi
phi ~ dt(mu.phi , pre.phi , 4) # prior for theta

}

The scale of θ is changed with the function logit() in BUGS, this is one of
the few functions that can be written on the left hand side of the equation.

Propietario
Cuadro de texto
ESTADÍSTICA (2010), 62, 179, pp. 21-44

Propietario
Cuadro de texto
38

19

Figure 7. Directed acyclic graph representation of the binomial model with a t-
distribution prior on the logistic scale. The DAG represents the loops over the observed
values of y and over the missing values ymis. Missing data is imputed by posterior pre-
dictive values

phi

pre.phimu.phi

theta

for(i in 1:n-m)

y.obs[i]

for(i in n-m+1:n)

y.miss[i]

eta

The t-distribution in BUGS uses the precision and not the variance as the scale
parameter of the distribution. Precision is defined as the inverse of the variance.
BUGS uses this parametrization in all symmetric continues distributions, e.g.,
Normal and double exponential.

To run this model in R, we save the BUGS code in missing-flips.txt and we
change the list of data by including the prior mean and precision of φ
n <- length(y.true)
mu.phi <- 0
pre.phi <- 0.001
data1 <- list (‘‘n’’, ‘‘y.miss ’’, ‘‘mu.phi ’’, ‘‘pre.phi ’’)
par1 <- c(‘‘theta ’’)

then we apply the bugs() function as usual.
m.miss <- bugs(data1 , inits=NULL , par1 ,

‘‘missing -flips.txt ’’, n.chains = 3,
n.iter = 4000, n.thin=5, bugs.directory =

bugsdir ,
working.directory = getwd(),
clearWD=TRUE , debug=TRUE)

> print(m.miss , digits.summary = 3)
...

Propietario
Cuadro de texto
39

Propietario
Cuadro de texto
VERDE: An introduction of Bayesian data analysis with R and Bugs...

20

mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff
theta 0.38 0.06 0.26 0.33 0.38 0.42 0.50 1.00 1200
deviance 80.87 1.37 79.88 79.99 80.39 81.20 84.76 1.00 1200
...
pD = 1.0 and DIC = 81.9

The presence of missing data has been increased substantially the spread of the
posterior of θ. The posterior standard deviation with complete data is 0.048
compared with 0.062 with missing data. Almost a 30% of increase in variability
due to the missing values. Figure 8 shows the effect of imputing missing values
in the posterior distribution of θ.

Figure 8. Posterior distribution of the heads rate θ. The histogram corresponds to the
posterior distribution of θ for complete data and the solid line is the smoothed posterior
of θ with 30% of missing data. Missing data is imputed by using the predictive posterior
distribution

Comparison between posteriors

θ

De
ns

ity

0.20 0.25 0.30 0.35 0.40 0.45 0.50

0
2

4
6

8

6.2 Non-ignorable missing data mechanism

Non-ignorable missing data means that the process which generates missing ob-
servations is linked somehow to the data generating process. Under this assump-
tion, we can improve imputation and estimation by gaining understanding on how
missing values were generated.

To illustrate the importance of including this information in the data analysis,
consider the following toy example. Let θ be the head’s rate and let γ = θ/(1+θ)

Propietario
Cuadro de texto
40

Propietario
Cuadro de texto
ESTADÍSTICA (2010), 62, 179, pp. 21-44

21

be the rate of missing values. Now, suppose that m out of 100 flips are missing,
then m/100 gives information about γ and θ as well. To implement this example
in R, we generate some missing data according to this parameters’ relationship.
Informative missing process ...
> mean(y.true)

[1] 0.38
> 0.38/(1+0.38)
[1] 0.2753623
>
missing flips
set.seed (123)
index <- sample (1:100 , 28, replace=FALSE)
y.miss <- y.true
y.miss[index] <- NA
I.mis <- rep (1 ,100)
I.mis[y.miss!=‘‘NA ’’] <- 0
> I.mis

[1] 1 0 1 0 0 1 1 1 0 1 0 1 1 0 0

The vector I.mis has values equal to 1 for the missing data and 0 to observed
values. This vector is used together with y.mis in BUGS as follows.
#Binary example: informative missing data analysis
model
{
for(i in 1:n){

y.miss[i] ~ dbern(theta) # model for y
I.mis[i] ~ dbern(gamma) # model for missing

indicator
}
gamma <- theta /(1+ theta)
logit(theta) <- phi
phi ~ dt(mu.phi , pre.phi , 4) # prior for theta

}

We save this model as missing-flips2.txt and we run the analysis in R.
data1 <-

list(‘‘n’’,‘‘y.miss ’’,‘‘I.mis ’’,‘‘mu.phi ’’,‘‘pre.phi ’’)
par1 <- c(‘‘theta ’’)
m.miss2 <- bugs(data1 , inits=NULL , par1 ,

‘‘missing -flips2.txt ’’, n.chains = 3, n.iter = 4000,
n.thin=5, bugs.directory = bugsdir , working.directory =
getwd (), clearWD=TRUE , debug=TRUE)

> print(m.miss2 , digits.summary = 3)
mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff

theta 0.3 0.04 0.2 0.3 0.3 0.3 0.4 1 1200
deviance 213.6 1.2 212.9 212.9 213.2 213.9 217.3 1 1200

Now we can compare these results with the model ignoring the missing mechanism
implemented in the file missing-flips.txt. There is an increase of 33% of
variability in the posterior of θ. Figure 9 compares these two posteriors.

Propietario
Cuadro de texto
VERDE: An introduction of Bayesian data analysis with R and Bugs...

Propietario
Cuadro de texto
41

22

Figure 9. Posterior distributions of the heads rate θ. The solid line is the posterior which
includes the informative missing process and the dashed line is the posterior which
ignores this process. The last one results in a distribution of θ with larger dispersion

0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55

0
2

4
6

8

Comparison between posteriors

θ

De
ns

ity

7. Summary

Bayesian data analysis includes Bayesian inference and a battery of modeling
tools including MCMC computations, model checking and powerful graphical
techniques. The aim of this tutorial was to give an elementary overview of this
approach by combining two powerful statistical languages, R and BUGS.

We concentrated on using WinBUGS and R. There are, however, alternative com-
putations engines to WinBUGS. One is JAGS (Just Another Gibbs Sampler) an
implementation of BUGS in C++ language. Another is OpenBUGS, the open
source version of BUGS in structural Pascal language. Both softwares aim for
portability of BUGS to UNIX operating systems and extensibility by sharing the
code with users and developers. The package BRugs in R directly calls Open-
BUGS in R without R2WinBUGS.

There are a large number of R packages implementing ready to use Bayesian in-
ference for particular models. The R task view on Bayesian inference summarizes
the scope and focus of these packages http://cran.r-project.org/web/views/
Bayesian.html.

Bayesian data analysis is an active area of research, by writing this tutorial I hope
that these techniques will be more close to practitioners willing to apply them in

Propietario
Cuadro de texto
42

Propietario
Cuadro de texto
ESTADÍSTICA (2010), 62, 179, pp. 21-44

23

their own work.

8. Acknowledgements

The author is very grateful to the Editorial Board of Estad́ıstica for the inviti-
tation to write this tutorial paper and in particular to Verónica Beritich for her
help and patience during the editorial process.

References

BECKER R. A. AND CHAMBERS J. M. (1984). S. An Interactive Environment
for Data Analysis and Graphics. Wadsworth & Brooks/Cole, Pacific Grove.

BECKER R. A. CHAMBERS J. M. AND WILKS A. R. (1988). The New S.
Language. Chapman & Hall, New York.

BOX G. E. P. (1980). “Sampling and Bayes inference in scientific modelling and
robustness.” Journal of the Royal Statistical Society, Series A. 143: 383–430.

BROOKS S. P. AND GELMAN A. (1997). “General methods for monitoring
convergence of iterative simulations.” Journal of Computational and Graphical
Statistics. 7: 434–455.

BUSH, R. R. AND MOSTELLER, F. (1955). Stochastic Models for Learning.
Wiley, New York.

CHAMBERS J. M. (1998). Programming with Data. A Guide to the S Language.
Springer-Verlag, New York.

CHAMBERS J. M. AND HASTIE T. J. (1992). Statistical Models in S. Chapman
& Hall, New York.

GELFAND, A. E., DEY, D. K., AND CHANG, H. (1992). “Model determination
using predictive distributions, with implementation via sampling-based methods.”
Bayesian Statistics. 4: 147–167. Oxford University Press, New York.

GELMAN A. AND HILL J. (2007). Data Analysis Using Regression and Multi-
level/Hierarchical Models, 513–527. Cambridge University Press, New York.

GELMAN A. AND NOLAN D. (2002). Teaching Statistics: A Bag of Tricks.
Oxford University Press, Oxford.

GELMAN A. AND RUBIN D. B. (1992). “Inference from iterative simulation
using multiple sequences (with discussion).” Statistical Science. 7: 457–511.

Propietario
Cuadro de texto
VERDE: An introduction of Bayesian data analysis with R and Bugs...

Propietario
Cuadro de texto
43

24

GELMAN A., CARLIN J. B., STERN H. S., AND RUBIN, D. B. (2004). Bayesian
Data Analysis, Second Edition. Chapman & Hall, New York.

GUTTMAN, I. (1967). “The use of the concept of a future observation in
goodness-of-fit problems.” Journal of the Royal Statistical Society, Series B. 29:
83–100.

LUNN D., SPIEGELHALTER D., THOMAS A., AND BEST N. (2009). “The
BUGS project: Evolution, critique and future directions.” Statistics in Medicine.
28: 3049–3067.

PLUMMER M., BEST N., COWLES K., AND VINES K. (2010). “Coda: Output
analysis and diagnostics for MCMC.” R package version 0.13–5. http://CRAN.
R-project.org/package=coda.

R DEVELOPMENT CORE TEAM (2010). R: A Language and Environment for
Statistical Computing. Vienna: R Foundation for Statistical Computing. ISBN
3-900051-07-0. http://www.R-project.org.

RUBIN, D. B. (1981). “Estimation in parallel randomized experiments.” Journal
of Educational and Behavioral Statistics. 6: 377–400.

RUBIN, D. B. (1984). “Bayesian justifiable and relevant frequency calculations
for the applied statistician.” The Annals of Statistics. 12: 1151–1172.

SPIEGELHALTER D. J., BEST N. G., CARLIN B. P., VAN DER LINDE
A. (2002). “Bayesian measures of model complexity and fit (with discussion).”
Journal of the Royal Statistical Society, Series B. 64: 583–640.

SPIEGELHALTER, D. J., THOMAS A., AND BEST, N. (2004). WinBUGS,
Version 1.4, Upgraded to 1.4.1, User Manual. MRC Biostatistics Unit, Cam-
bridge.

STURTZ S., LIGGES U., AND GELMAN A. (2005). “R2WinBUGS: A Package
for Running WinBUGS from R.” Journal of Statistical Software. 12: 1–16.

WEST, M. (1986). “Bayesian model monitoring.” Journal of the Royal Statistical
Society, Series B. 48: 70–78.

Invited Tutorial
Received August 2010
Revised December 2010

Propietario
Cuadro de texto
44

Propietario
Cuadro de texto
ESTADÍSTICA (2010), 62, 179, pp. 21-44

	PRELIMINARES
	pp 5-12
	pp 13-19
	Preamble
	Shared Professional Values
	Ethical Principles
	Background note
	Notes
	ADOPTED BY THE ISI COUNCIL
	Reykjavik, Iceland

	pp 21-44
	pp 45-57
	59-85
	MARIANA BALBONI
	Observatory for the Information Society in Latin America and the Caribbean (OSILAC); Division on Production, Productivity and Management; United Nations Economic Commission for Latin America and the Caribbean (UN-ECLAC)
	Observatory for the Information Society in Latin America and the Caribbean (OSILAC); Division on Production, Productivity and Management; United Nations Economic Commission for Latin America and the Caribbean (UN-ECLAC)
	ABSTRACT
	1. Introduction

	2. Measuring the Information Society
	2.1. Background
	2.2. Current status and key challenges in ICT measurement
	2.2. Statistical Information System on ICT

	3. Digital divide in Latin American and the Caribbean
	3.1. The access gap
	3.2. The usage gap

	References

	pp 87-88
	pp 89-92
	GUIA PARA EL AUTOR
	REQUERIMIENTOS
	2. SOFTWARE
	3. TAMAÑO DEL PAPEL Y MÁRGENES
	 El tamaño de papel deberá ser A4: 21.0 x 29.7 cm (8.26” x 11.69”).
	4. FUENTE
	6. ESPACIADO
	7. ÉNFASIS
	8. SANGRIAS
	9. NUMERACIÓN DE PÁGINAS
	10. ENCABEZADO, PIE DE PAGINA O NOTAS AL PIE
	 En el texto deberá evitarse la utilización de pie de página, encabezados y notas al pie.
	 Si fuera absolutamente necesaria la utilización de notas al pie, deberán identificarse con supraíndices numéricos en el orden en que aparezcan en el texto.
	 Las notas al pie de página se deberán escribir todas juntas al final del artículo después de las Referencias.
	11. AUTORES
	12. TITULO Y SUBTITULOS
	13. RESUMEN Y ABSTRACT
	14. PALABRAS CLAVE
	15. GRÁFICOS Y TABLAS
	 Todas las tablas y los gráficos deberán tener un título y estar numeradas correlativamente.
	 Los títulos deberán escribirse en la parte superior izquierda de las tablas y los gráficos en Times New Roman 10 (Word) o CMR10 (LATEX).
	 Los gráficos deberán presentarse en su forma definitiva para publicación, se recomienda no utilizar color sino matices de grises o distintas tramas. La resolución óptima para impresión es de 300 dpi. El tamaño de la imagen deberá ser un 20% mayor al que tendrá en la publicación.
	 Si los gráficos o las tablas no se incluyen como parte del documento, deberán ser enviados en archivo aparte en formato Excel para Word o EPS para LATEX.
	Los títulos deberán estar en concordancia con el siguiente estilo:
	16. ECUACIONES
	Las ecuaciones deberán estar numeradas. La numeración deberá colocarse a la derecha de la ecuación.
	17. CITAS DE REFERENCIAS EN EL TEXTO
	Para citar un artículo en el texto, se indicará autor y año de publicación, como en los siguientes ejemplos:
	 the model proposed by Barnett (1969)
	 The theoretical treatment provided by Fuller (1987, cap.4)
	 Bold et al. (1995) also find....
	18. REFERENCIAS
	 Las referencias deberán disponerse en orden alfabético según apellido del autor y, para un mismo autor, en orden cronológico al final del artículo.
	 Las partes que deberá contener una referencia son las siguientes: Autor(es), año de publicación, título, información sobre la publicación.
	Las referencias deberán estar en concordancia con el siguiente estilo:

	pp 93-96
	GUIDELINES FOR THE AUTHOR
	REQUIREMENTS
	2. SOFTWARE
	3. SIZE OF THE PAPER AND MARGINS
	 Use A4 paper: 21.0 x 29.7 cm (8.26” x 11.69”)
	4. FONT
	6. SPACING
	7. ENPHASIS
	8. INDENTATIONS
	9. PAGE NUMBERING
	10. HEADING, FOOTER AND FOOTNOTES
	 The use of footers, headings, and footnotes shall be avoided in the text.
	 In case the use of footnotes is absolutely necessary, they shall be identified with numeric supra-indices in the order they appear in the text.
	 The footnotes shall be written together, after the References.
	11. AUTHORS
	12. TITLES AND SUB-TITLES
	13. ABSTRACT AND RESUMEN
	14. KEY WORDS
	15. GRAPHS AND TABLES
	 All tables and graphs shall have a title and be sequentially numbered.
	 Titles shall be written in the upper left part of tables and graphs, in Times New Roman 10 (Word) or CMR10 (LATEX).
	 The graphs shall be presented in their final form for publication. It is recommended not to use colors but different gray shades or different plots. Optimal resolution for printing is 300 dpi. The size of the image shall be 20% larger than the size for the final publication.
	 In case the graphs or tables are not included as a part of the document, they shall be sent in a separate file in Excel format for Word or EPS for LATEX.
	Titles shall be in accordance with the following style:
	16. EQUATIONS
	Equations shall be numbered. The number shall be written to the right of the equation.
	17. REFERENCES IN THE TEXT
	To refer to a paper in the text, the author and year of publication shall be indicated, as in the following examples:
	 the model proposed by Barnett (1969)
	 The theoretical treatment provided by Fuller (1987, cap.4)
	 Bold et al. (1995) also find....
	18. REFERENCES
	 The references shall be placed, at the end of the paper, in alphabetical order by the names of the authors and, for the same author, in chronological order.
	 References shall include the following: Author(s), year of publication, title, information on the publication.
	References shall be presented in accordance with the following style:

	pp 97-98

