Monopolistic competition refers to an “industry” with a
large number of firms, each facing a downward-sloping
demand (for differentiated products) but making no profit
because of fixed costs, and such that strategic interaction
is absent (i.e., each firm can ignore its impact on other
firms). As we will see, this latter property distinguishes
the monopolistically competitive situations from the
zero-profit equilibrium studied in the spatial-differentiation
model. The supplementary section applies the familiar
model of Dixit and Stiglitz (1977) and Spence (1976) to
an analysis of product diversity in a monopolistically
competitive economy.

In section 7.3, ideas developed in sections 7.1 and 7.2
are used to study informational differentiation, another
type of product differentiation that results from con-
sumers’ uneven information about the characteristics (ex-
istence, price, quality, etc.) of various products. We focus
on the link between advertising and differentiation. After
reviewing the conventional wisdom on advertising, we
will see how informative advertising can increase the
elasticity of demand for a product and foster competition.
We will also see that competition may yield (from a social
standpoint) too much or too little informative advertising.

7.1 Spatial Competition
7.1.1 The Linear City

We first consider a model (originally due to Hotelling
[1929]) in which a “linear city” of length 1 lies on the
abscissa of a line and consumers are uniformly distrib-
uted with density 1 along this interval. There are two
firms or stores, which sell the same physical good. For
simplicity, and as a first step, these two stores are located
at the extremes of the city; store 1 is at x = 0 and store 2
at x = 1. The unit cost of the good for each store is c.
Consumers incur a transportation cost  per unit of length
(this cost may include the value of time spent in travel).
Thus, a consumer living at x incurs a cost of tx to go to
store 1 and a cost of K1 — x) to go to store 2. The
consumers have unit demands; i.e., each consumes one or
zero unit of the good. Each consumer derives a surplus

from consumption (gross of price and transportation costs)
equal to .

We will also consider a variant of this model in which
the transportation costs are quadratic instead of linear. In
this case, a consumer at x incurs a cost of fx* to go to
store 1 and a cost of #(1 — x)? to go to store 2. In this
version, the marginal transportation cost increases with
the distance to the store. As we will see, the quadratic
model is sometimes more tractable than the linear one.

7.1.1.1 Price Competition

In this subsection we take the firms’ locations as given
and look for the Nash equilibrium in prices. Assuming
that firms choose their prices p; and p, simultaneously,’
we derive the demand function for guadratic transporta-
tion costs. Let us assume that the prices of the two firms
do not differ so much that one firm faces no demand,
and that the prices are not too high relative tos (so that
all consumers buy—i.e., the market is covered). The first
condition must clearly be satisfied in equilibrium, because
a firm with no demand makes no profit and therefore has
an incentive to lower its price to gain market share. The
second condition is satisfied in equilibrium if the con-
sumers’ surplus from the good 5 is sufficiently large.

A consumer who is indifferent between the two firms
is located at x = D, (p,, p,), where x is given by equating
generalized costs; i.e.,

P1 + l‘x2 = P2 + t(l - x)z.

The firms’ respective demands are

—p it
Dy(pr.p2) =x = &_2}1_1_
and
—py+
Dy(pup) =1—x =82

When the firms are located at the two extremes of the
city, the demand functions are the same for linear cost as
for quadratic cost. (This is not robust. It does not
hold if the market is not covered, and, as we will see
shortly, it is contingent on the locations’ being the two

279

3. For the derivation of the demand functions for linear transportation costs,
see section 2.1.
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extremities of the city.) In both cases, firm i’s profit is
Hi(F’i:F’j) = (pi—o(p; — pi + /2t

The goods produced by the two firms are strategic
complements in prices (IT{; > 0). This important property
will hold for all the models in this chapter except that of
monopolistic competition, in which interaction is absent.
Its role will be clarified in the next chapter.

For either linear or quadratic transportation costs, firm
i chooses p; so as to maximize its profit given the price p;
charged by its rival; i.e.,

IT' = max [IT'(p;, p))].

pi
The first-order condition for firm i is
pitc+t—2p,=0,

and the second-order condition is satisfied. Using the
symmetry of the problem, we obtain the competitive
prices and profits under product differentiation:

pi=ps=c+!t (7.1)
and
T =I1% = /2. (7.2)

We speak of differentiated products even though they are
physically identical. The products are differentiated more
for the consumer when the transportation cost is higher.
When  increases, both stores compete less strenuously
for “the same consumers”; indeed, the neighboring clien-
tele of a store becomes more captive, giving the store
“monopoly power” (which, in turn, allows it to increase
its price). On the other hand, when = 0 all the con-
sumers can go to either store for the same cost (0). The
absence of product differentiation leads to the Bertrand
result.

Because we are also interested in the firms’ choice of
product differentiation, we would like to know how the
equilibrium prices vary with the firms’ locations. We have

looked at one polar case—the one in which firms are
located as far as possible from each other (maximal dif-
ferentiation). The other polar case is that in which they
produce the same product—i.e., they are located at the
same point (say x,) and their goods are perfect substi-
tutes. Comparing the generalized costs p; + t|x — x| (or,
in the quadratic case, p; + tHx — xo)?) for a consumer
located at any point x amounts to just comparing prices
p; and p,. Hence, the Bertrand result holds for identical
locations:

pr=p;=0 (7.3)
and
M =11%=o. (7.4)

More generally, let us assume that firm 1 is located at
point 4 > 0 and firm 2 at point 1 — b, where b > 0 and,
without loss of generality, I —a — b > 0 (firm 1 is to the
“left” of firm 2; 2 = b = 0 corresponds to maximal differ-
entiation and 2 + b = 1 corresponds to minimal differen-
tiation, i.e., perfect substitutes). The linear-cost model is
not very tractable if firms are located inside the interval,
because when a firm lowers its price to the point that it
just attracts the consumers located between the two firms
it also attracts all consumers located on the other side of
the rival.* The firms’ demand functions are discontinuous.
Their profit functions are discontinuous and nonconcave.
Consequently, the price-competition problem is not well
behaved. Indeed, d’Aspremont, Gabszewicz, and Thisse
(1979) show that if the firms are located close to the
center of the segment (but not at the same location), no
pure-strategy price equilibrium exists.’

The quadratic-cost model allows us to sidestep these
technical issues. The demand and profit functions are well
behaved (continuous and concave). We obtain

1—g=1 P2 — P
2 2H1 —a — b)

Di(py,p) =x=a+ (7.5)

4. Suppose that a consumer is located at x > 1 — b >a. This consumer
belongs to firm 2’s “turf” or “back yard.” His choice between the two firms is
determined by the comparison between

py + Hx —a)
and

pa + Ha— (1= D)l
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i.e., between p, and p, — H1 — a — b). Thus, all consumers located to the right
of firm 2 always make the same brand choice as the consumer located at firm
2’s location. This means that at p, = p, — #(1 — a — b) the demand functions
are discontinuous; all consumers on firm 2's turf switch to firm 1 for a small
reduction in p;.

5. A mixed-strategy price equilibrium does exist. See Dasgupta and Maskin
1986.
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and

3 B 1—a—b Pr— P2
Dz(p1/p2>—1 x_b+ 2 +2,t(1—a—b)

(7.6)

(as long as these are non-negative and do not exceed 1
and as long as 5 is sufficiently large that the market is
covered).

To interpret equation 7.5, notice that for equal prices
firm 1 controls its own turf (of size @) and receives the half
of the consumers located between the two firms who are
closer to firm 1 (numerically, (1 — b — a)/2). The third
term of equation 7.5 expresses the sensitivity of demand
to the price differential.

The Nash equilibrium in prices, which always exists, is

pf(u,b)=c+t(1—u—b)<1+as_b>, (7.7)

p;(a,b)=c+t(1—a—b)<1+ b;“). (7.8)

Exercise 7.1*  Check equations 7.5 through 7.8.

7.1.1.2 Product Choice

Suppose now that there are two firms and that each firm
is allowed to choose only one product (that is, only one
location). This defines a two-stage game in which (1) the
firms choose their locations simultaneously and (2) given
the locations, they choose prices simultaneously. As
was mentioned earlier, each firm must anticipate how its
choice of location affects not only its demand function
but also the intensity of price competition. Therefore, to
study location (product) competition, we use the reduced-
form profit functions, e.g.,

(4, b) = [p$(a, b) — cID;la, b, pi(a, b), p3(a, b)), (7.9)

where D, is given by equation 7.5. An equilibrium in
location is such that firm 1 maximizes I1*(a, b) with re-
spect to a, taking b as given, and similarly for firm 2. (This
procedure is similar to the two-stage, capacity-and-then-
price competition studied in chapter 5.)

D’Aspremont et al. (1979) show that for quadratic
transportation costs, the equilibrium has the two firms
locating at the two extremes of the city (maximal differ-
entiation). Each firm locates far from its rival in order not
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to trigger a low price from the rival, and thus price com-
petition is softened. To show this, we could compute
the reduced-form profit functions IT'(a, b) explicitly using
equations 7.5 through 7.8 and solve for a Nash equi-
librium; however, it is more elegant and instructive to
proceed otherwise. Suppose, without loss of generality,
that in equilibrium

0<a<1—-b<1L

We know that to maximize I1'(a, b) (given by equation
7.9) with respect to a2 we need not take the derivative
oI 9pf

op, 0a’

This is due to the envelope theorem: Firm 1 maximizes
with respect to price in the second period, so I1'/dp,
= 0. Thus, we need only look at the direct effect of a on
TI! (the demand effect) and the indirect effect through the
change in firm 2’s price (the strategic effect). That is,

e _ (@D, oD s
A R op, da )

Using equations 7.5, 7.7, and 7.8 we get

oDy _ 1 ps—ps _ 3—5a—b
da —2+2t(1—ﬂ—b)2—6(1—a—b)’ (7.10)

and using equations 7.5 and 7.8 we get

B (L (4
op, da = \2H1 —a—b) 3 3

__—2+a (7.11)
T 31—a—b '

Adding equations 7.10 and 7.11 and using the fact that
the mark-up (p{ — ¢) is positive, we can easily show that
dT1!/da < 0. Hence, firm 1 always wants to move left-
ward if it is to the left of firm 2, and similarly for firm 2.
Therefore, the equilibrium in locations exhibits maximal
differentiation.

Use of the envelope theorem (which will be reiterated
in the next chapter) is also instructive. It exhibits the
conflict between two effects. First, equation 7.10 shows
that if @ is not too big (in particular, if it does not exceed
1, using 1 — b > a), firm 1 will want to move toward the
center to increase its market share given the price struc-
ture. This is part of a more general result that, for given
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prices, the two firms want to locate at or near the center
(see subsection 7.1.3). However, firm 1 also acknowledges
that the associated decrease in product differentiation
forces firm 2 to lower its price. The computations show
that this strategic effect dominates the market-share
effect.

It is interesting to compare the market-determined
locations to the socially optimal ones. Suppose that the
social planner chooses locations for the two firms. Be-
cause consumption is fixed, the social planner minimizes
the consumers’ average transportation cost (this holds
whether the firms exercise their market power as above or
are forced to price at marginal cost; for given locations,
and as long as the market is covered, the pricing structure
does not affect the sum of consumer surplus and profits in
this inelastic-demand model). By symmetry of the prob-
lem, the social planner chooses to locate the two firms
equidistantly on either side of the middle of the segment,
so that for equal prices a firm serves the left or the right
half of the market. Hence, the location that minimizes the
average transportation cost on a market segment is the
middle of this market segment when the density of con-
sumers is uniform. Thus, the socially optimal locations
are + and 2. In this example, the market outcome yields
socially too much product differentiation.

Exercise 7.2** Consider the model of differentiation on
the line. The two firms’ locations are fixed, and they are
the two extremities of the segment. Transportation costs
are linear in distance, and the distribution of consumers
is uniform along the segment. The firms have constant
marginal costs, ¢; and ¢,, which are not necessarily equal
(but, for simplicity, assume that they do not differ too
much, so that each firm has a positive market share in
equilibrium).

(i) Compute the reaction functions p; = R,(p;). Infer
the Nash-equilibrium prices p;(c;, ¢;) and the reduced-form
profits II'(c; ;) as functions of the two marginal costs.

(ii) Show that 0*IT"/dc;dc; < 0.

(iii) Suppose that, before competing in price, the firms
play a first-period game in which they simultaneously
choose their marginal cost. (Think of an investment cost
#(c) of choosing marginal cost ¢, with ¢’ < 0and ¢” > 0.)
Show that, as in the previous choice-of-location game,
this investment game gives rise to a direct effect and a
strategic effect.
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7.1.2 The Circular City

7.1.2.1 The Model

The above consideration of a linear city allowed us to
examine price competition with differentiated products,
as well as the choice of product in duopoly. Now let us
study entry and location when there are no “barriers to
entry” other than fixed costs or entry costs. Assuming
that there exist a large number of identical potential firms,
we will look at the number of firms entering the market.
To do so, it is actually more convenient to consider a
circular city with a uniform distribution of consumers. In
this case, the product space is completely homogeneous
(no location is a priori better than another), which makes
the study of the issue at hand more tractable.

The following model is due to Salop (1979). Con-
sumers are located uniformly on a circle with a perimeter
equal to 1. Density is unitary around this circle. Firms are
also located around the circle, and all travel occurs along
the circle (like the linear city, this is a bit contrived in
order to simplify the analysis, but one may think of a city
around a lake, with boats being an inefficient transporta-
tion technology; or of supermarkets in a circular suburbia
with a costly-to-cross city at its center; or else of aircraft
departure times).

As before, consumers wish to buy one unit of the
good, have a unit transport cost # (for simplicity, we will
consider only linear transportation costs), and are willing
to buy at the smallest generalized cost so long as the
latter does not exceed the gross surplus they obtain from
the good (3). Each firm is allowed to locate in only one
location (we will discuss this assumption below, and es-
pecially in the next chapter, where we will examine the
possibility of entry deterrence through brand prolifera-
tion). In order to address the issue of the number of firms,
we introduce a fixed cost of entry, f. Once a firm is in
and is located at a point on the product space, it faces
a marginal cost ¢ (smaller than 5). Thus, firm i’s profit
is (p; — ¢)D; — f if it enters (where D, is the demand it
faces), and 0 otherwise.

Salop considers the following two-stage game: In
the first stage, potential entrants simultaneously choose
whether or not to enter. Let n denote the number of
entering firms. Those firms do not choose their location,
but rather are automatically located equidistant from one
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