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SUMMARY

A more complete understanding of how fear extinc-
tion alters neuronal activity and connectivity within
fear circuits may aid in the development of strategies
to treat human fear disorders. Using a c-fos-based
transgenic mouse, we found that contextual fear
extinction silenced basal amygdala (BA) excitatory
neurons that had been previously activated during
fear conditioning.We hypothesized that the silencing
of BA fear neurons was caused by an action of
extinction on BA inhibitory synapses. In support
of this hypothesis, we found extinction-induced
target-specific remodeling of BA perisomatic inhibi-
tory synapses originating from parvalbumin and
cholecystokinin-positive interneurons. Interestingly,
the predicted changes in the balance of perisomatic
inhibition matched the silent and active states of the
target BA fear neurons. These observations suggest
that target-specific changes in perisomatic inhibitory
synapses represent a mechanism through which
experience can sculpt the activation patterns within
a neural circuit.

INTRODUCTION

Exposure therapy is widely used to treat fear disorders, but it

rarely leads to a complete and permanent loss of maladaptive

fear. A deeper understanding of the neurobiological mechanisms

that underlie exposure therapy can be achieved by studying fear

extinction in animal models (Graham et al., 2011) and may be

useful for the development of more effective therapies. Over

the past decades, studies on the neurobiological basis of fear

extinction have discovered that multiple brain regions are re-

cruited by fear extinction (Corcoran and Maren, 2001; Falls

et al., 1992; Morgan et al., 1993; Vianna et al., 2001). These brain

regions include both cortical and subcortical areas that are

reciprocally connected, thereby forming a distributed extinction

circuit that can be recruited by behavioral extinction training and

that, upon its recruitment, can lead to the loss or suppression of

fear (Orsini andMaren, 2012). In addition to the extinction circuit,

a fear circuit has been characterized that is responsible for the
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storage and expression of fear memories and that is also distrib-

uted over multiple brain regions (Orsini andMaren, 2012). Impor-

tant for using rodents as model organisms, both the extinction

and fear circuits are highly conserved between rodents and

humans (Hartley and Phelps, 2010). In this study, we address

the question of the precise anatomical and functional connection

between the extinction circuit and the fear circuit toward the aim

of gaining a greater understanding of how they interact during

fear extinction.

One potential strategy for identifying the interface between the

extinction circuit and the fear circuit is to identify neurons within

the fear circuit that are silenced by extinction and then use these

neurons as a starting point for determining which upstream

events within the extinction circuit cause their silencing. The first

step toward applying this strategy was made using electrophys-

iological recordings of neurons in the amygdala, a brain region

known as a central hub within the fear circuit (Orsini and Maren,

2012). Electrophysiological recordings revealed that neurons in

the lateral amygdala and the basal amygdala can increase their

firing in response to fear conditioning and, subsequently, can

be silenced in response to fear extinction (Amano et al., 2011;

Herry et al., 2008; Hobin et al., 2003; Livneh and Paz, 2012;

Repa et al., 2001). However, the precise mechanisms through

which the extinction circuit achieves the extinction-induced

silencing of amygdala fear neurons are not fully understood.

Modification of synaptic input, by either decreasing excitatory

input or increasing inhibitory input, is a candidate mechanism.

The importance of inhibitory synaptic plasticity is increasingly

being appreciated (Kullmann et al., 2012), and inhibitory plas-

ticity has been implicated in fear extinction (Ehrlich et al., 2009;

Makkar et al., 2010).

In this study, we employed an imaging approach to identify the

precise location of basal amygdala (BA) fear neurons that are

silenced by contextual fear extinction and determine how these

fear neurons are silenced. We previously imaged BA fear neu-

rons with a transgenic mouse that uses tetracycline-controlled

tagging (TetTag) of neurons activated during fear conditioning

(Tayler et al., 2013; Reijmers et al., 2007). Here, we utilize the Tet-

Tagmouse to image BA fear neurons that are silenced by extinc-

tion. We find evidence for structural plasticity of perisomatic

inhibitory synapses originating from parvalbumin-positive inter-

neurons after silencing of BA fear neurons by fear extinction.

Importantly, these parvalbumin-positive synapses were located

immediately around the soma of the silenced BA fear neurons,

revealing an anatomical and functional connection between the
.
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Figure 1. Fear Extinction Silences the Basal

Amygdala Fear Memory Circuit

(A) A double transgenic TetTag mouse line was

used that expresses the tetracycline transcrip-

tional activator (tTA) under control of the activity-

regulated c-fos promoter. In the absence of

doxycycline (�DOX), tTA binds to the tet oper-

ator (tetO) in the second transgene and induces

expression of a long-lasting histone2B-GFP

fusion protein.

(B) Image of an excitatory basal amygdala (BA)

neuron tagged with long-lasting histone2B/GFP

(green) and immunolabeled with a calcium/

calmodulin-dependent kinase II (CamKIIa) anti-

body (red). Scale bar, 10 mm.

(C) Schema of the experimental procedure.

‘‘�DOX’’ opened a time window for tagging fear

conditioning-activated neurons (GFP+; i.e., fear

neurons) in two experimental groups (FC, n = 15;

FC+EXT, n = 17). Zif expression during retrieval

(Zif+) was used to detect the reactivation of tagged

fear neurons (GFP+Zif+; i.e., active fear neurons).

The absence of Zif in GFP+ neurons was used to

identify silent fear neurons (GFP+Zif�).

(D) As training progressed, FC and FC+EXT mice

showed an increase in their level of freezing

(between sessions: ***p < 0.001 for FC and ���p <

0.001 for FC+EXT).

(E) FC and FC+EXT groups had similar percent-

ages of GFP+ neurons (sum of GFP+Zif� and

GFP+Zif+) in the BA (p = 0.49).

(F) The FC+EXT group showed a significant decrease in freezing during the extinction sessions on days 2 and 3 (***p < 0.001 E1 versus others and ���p < 0.001 E2

versus others).

(G) Freezing during retrieval on day 4 in the FC+EXT group was absent and was significantly lower compared to the FC group (p = 0.00014).

(H) There was no significant difference in the percentage of Zif+ among GFP� neurons between the two groups (p = 0.064).

(I) Representative image of GFP-positive (GFP+, green) and Zif-positive (Zif+, red) nuclei in the basal amygdala (BA) of an FC (left) and an FC+EXT mouse (right).

Arrows indicate active fear neurons (GFP+Zif+) and arrowheads indicate silent fear neurons (GFP+Zif�). Scale bar, 50 mm.

(J) Extinction decreased the number of active BA fear neurons, as indicated by FC+EXT mice having less GFP+Zif+ neurons than FC mice (p = 0.00023). In both

groups, the percentage of GFP+ZIF+ neurons was higher than chance level (FC: p = 0.0000098; FC+EXT p = 0.0014). Chance level was determined by using the

percentage of Zif+ among GFP� neurons as shown in (H). Graphs show means ± SEM. **p < 0.01, ***p < 0.001.

See also Figure S1.
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extinction circuit and the fear circuit. In addition, fear extinction

altered the presence of perisomatic endocannabinoid receptors

around the soma of BA fear neurons that remained active after

fear extinction. Our findings provide insight into the mechanisms

underlying the silencing of fear circuits and, more generally, add

to our knowledge of how behavior can sculpt activity and con-

nectivity within a neural circuit.

RESULTS

Fear Extinction Silences the Basal Amygdala Fear
Memory Circuit
Prior electrophysiological studies have revealed that fear extinc-

tion can decrease the firing of BA fear neurons (Amano et al.,

2011; Herry et al., 2008; Livneh and Paz, 2012), but the underly-

ing mechanisms are not fully understood. We took advantage of

a c-fos-based reporter mouse, the TetTag mouse (Reijmers

et al., 2007), to image the effect of contextual fear extinction

on BA fear neuron activation. The TetTag mouse expresses

long-lasting nuclear GFP under control of the c-fos promoter

(Figure 1A), which enabled us to tag excitatory neurons activated
Ne
during fear conditioning (i.e., fear neurons, Figures 1B, S1A, and

S1B available online). The expression of the immediate-early

gene zif268/egr1 (Zif) served as a marker for neurons activated

during a later retrieval test (Okuno, 2011; Reijmers et al., 2007)

(Figures 1C and S1C). Two groups of TetTag mice (fear condi-

tioned [FC], n = 15; FC followed by extinction [FC+EXT], n =

17) were subjected to contextual fear conditioning (Figures 1C

and 1D). As expected, similar numbers of BA fear neurons

were tagged with GFP in both groups (Figure 1E). The next

2 days, only one group (FC+EXT) was subjected to extinction

trials, while the other group (FC) remained in the home cage.

Extinction caused the loss of fear expression as indicated by

the total suppression of freezing at the end of the extinction

procedure (Figure 1F) and during retrieval on day 4 (Figure 1G).

Extinction had no significant effect on the activation of BA neu-

rons that were not tagged during fear conditioning (GFP�Zif+,

Figure 1H). We analyzed the BA fear memory circuit by defining

two types of fear neurons (i.e., tagged during fear conditioning):

silent fear neurons (GFP+Zif�, fear neurons not reactivated dur-

ing retrieval) and active fear neurons (GFP+Zif+, fear neurons

reactivated during retrieval) (Figure 1I). We found that fear
uron 80, 1054–1065, November 20, 2013 ª2013 Elsevier Inc. 1055
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Figure 2. Activation of Brain Regions Up-

stream of the Basal Amygdala Is Not Altered

after Fear Extinction

(A) The FC and FC+EXT groups had similar per-

centages of GFP+ neurons in the dorsal CA1

(dCA1), ventral CA1 (vCA1), and infralimbic cortex

(IL) (dCA1: p = 0.44; vCA1: p = 0.50; IL: p = 0.17).

(B) Representative image of GFP+ neurons (green)

and Zif+ neurons (red) in the dCA1 (top), vCA1

(middle), and IL (bottom)ofanFCmouse (left) andan

FC+EXT mouse (right). Blue, DAPI. Arrows indicate

active fear neurons (GFP+Zif+). Scale bar, 50 mm.

(C) No significant differences in the percentage of

Zif+ among GFP� neurons were found (dCA1: p =

0.25; vCA1: p = 0.21; IL: p = 0.056).

(D) Extinction had no effect on reactivation of dCA1,

vCA1, and IL. The numberofGFP+Zif+neuronswas

similar between the two groups (dCA1: p = 0.26;

vCA1: p = 0.61; IL: p = 0.27). The number of GFP+

Zif+ neurons was above chance level in the dCA1,

vCA1, and IL of both groups (dCA1: FC versus

chance, p = 0.00017; FC-EXT versus chance, p =

0.000017; vCA1: FCversus chance, p = 0.0027; FC-

EXT versus chance, p = 0.0072; IL: FC versus

chance, p = 0.000062; FC-EXT versus chance, p =

0.0026). Chance level was determined by using the

percentage of Zif+ amongGFP� neurons as shown

in (C). Graphs show means ± SEM. n.s., not signifi-

cant; *p < 0.05, **p < 0.01, ***p < 0.001.

Neuron
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extinction caused a 2.3-fold decrease in the number of active BA

fear neurons, with a subgroup of fear neurons remaining active

after extinction (GFP+Zif+; Figures 1J and S1D). This extinc-

tion-induced silencing of the BA fear memory circuit, caused

by contextual fear extinction, is similar to that previously found

in electrophysiological studies on tone fear extinction (Amano

et al., 2011; Herry et al., 2008; Livneh and Paz, 2012). In addition,

the observed concomitant reduction in active BA fear neurons

and freezing replicates previous studies (Herry et al., 2008;

Reijmers et al., 2007) and reflects the causative role of the basal

amygdala in the behavioral expression of contextual fear (Maren,

1998). Therefore, our results provide further support for a model

in which extinction decreases fear by silencing the fear memory

circuit within the BA.

Activation of Brain Regions Upstream of the Basal
Amygdala Is Not Altered after Fear Extinction
We next explored where extinction acted to cause a silencing of

the BA fear memory circuit. We first addressed the possibility

that contextual fear extinction might act on brain regions up-

stream of the BA and thereby indirectly silence fear neurons in

the BA. The BA receives inputs from the CA1 area of the hippo-

campus and from the infralimbic prefrontal cortex, brain regions

that have been implicated in fear extinction (Hartley and Phelps,
1056 Neuron 80, 1054–1065, November 20, 2013 ª2013 Elsevier Inc.
2010; Orsini and Maren, 2012). We there-

fore tested whether fear extinction altered

the activation of excitatory neurons in the

CA1 region of the hippocampus (both

dorsal and ventral: dCA1 and vCA1) and

in the infralimbic prefrontal cortex (IL).
We analyzed the same brains that were used for the BA analysis,

since the TetTagmouse enables the tagging of neurons recruited

by fear conditioning throughout the whole brain (Deng et al.,

2013; Garner et al., 2012; Liu et al., 2012; Matsuo et al., 2008;

Reijmers et al., 2007; Tayler et al., 2011, 2013). As expected,

the FC and FC+EXT groups had similar percentages of neurons

tagged in these brain regions during contextual fear conditioning

(Figures 2A and 2B). Contextual fear extinction did not alter the

activation of nontagged dCA1 and vCA1 neurons during retrieval

(Figure 2C) or the reactivation of tagged dCA1 and vCA1 neurons

during retrieval (Figures 2B and 2D). These results are consistent

with a previous study reporting that contextual fear extinction

acts on a population of CA1 neurons that is segregated from

the CA1 neurons recruited during fear conditioning (Tronson

et al., 2009) and indicate that the memory of the context is

retained after contextual fear extinction (Rudy et al., 2004).

Similar to the hippocampal CA1 neurons, the activation of non-

tagged IL neurons (Figure 2C) and the reactivation of tagged IL

neurons (Figures 2B and 2D) were not affected by contextual

fear extinction. Overall, we did not detect extinction-induced

functional changes in two important brain structures upstream

of the BA. We therefore shifted our focus to potential local

changes within the BA that might have caused the silencing of

the BA fear memory circuit.
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Figure 3. Fear Extinction Causes Target-

Specific Remodeling of Perisomatic Inhibi-

tory Synapses in the Basal Amygdala

(A) Image of glutamic acid decarboxylase-67

(GAD67) immunolabeling of the basal amygdala

(BA; scale bar, 100 mm). Arrows indicate GAD67-

positive (GAD67+) soma in the BA. The inset

shows a representative image of a GAD67+ inter-

neuron soma (scale bar, 10 mm).

(B) Extinction had no effect on GAD67 expression

in the total BA (p = 0.30).

(C) Extinction had no effect on somatic expression

of GAD67 in the BA (p = 0.16).

(D and E) Left: representative images of peri-

somatic GAD67 immunolabeling around silent BA

fear neurons (D, GFP+Zif�) and active BA fear

neurons (E, GFP+Zif+). Three images are shown

for each fear neuron (top: GFP in green, GAD67 in

gray; middle: Zif in red, GAD67 in gray; bottom:

GAD67 mask in black, value for that neuron

obtained by dividing black pixels by perimeter of

yellow outline). Scale bars, 10 mm.Right: extinction

increased perisomatic GAD67 around silent fear

neurons (D, p = 0.047) but not around active fear

neurons (E, p = 0.46). Graphs showmeans ± SEM.

*p < 0.05.

See also Figure S2.
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Fear Extinction Causes Target-Specific Remodeling of
Perisomatic Inhibitory Synapses in the Basal Amygdala
Around 85% of the neuronal cell population within the BA con-

sists of excitatory projection neurons, whereas the remaining

15% are local interneurons that make inhibitory synapses onto

the projection neurons (McDonald, 1992). Because BA inhibitory

interneurons have been implicated in fear extinction (Ehrlich

et al., 2009; Heldt and Ressler, 2007), we addressed the possibil-

ity that structural changes involving inhibitory circuits in the BA

might have caused the extinction-induced silencing of BA fear

neurons by increasing local inhibition. We first examined the

expression of 67 kDa glutamic acid decarboxylase (GAD67), a

key enzyme in GABA synthesis. Both GAD67 and the smaller iso-

form GAD65 have been implicated in fear extinction, but a spe-

cific role within the amygdala has so far only been established

for GAD67 (Heldt et al., 2012; Sangha et al., 2009). We did not

find evidence for increased GAD67 expression in either the

complete BA or in the soma of BA interneurons (Figures 3A,

3B, and 3C), consistent with a recent study (Sangha et al.,

2012). We hypothesized that fear extinction might act on a

synaptic site where local interneurons interface with the BA

fear neurons. We tested this hypothesis by imaging a special

type of inhibitory synapse called perisomatic synapse. Periso-
Neuron 80, 1054–1065, No
matic inhibitory synapses are a plausible

candidate for silencing BA fear neurons,

since they are well positioned to modu-

late the functional activation of excitatory

neurons (Miles et al., 1996). Consistent

with our hypothesis, we found that silent

fear neurons had increased GAD67

around their soma after extinction (Fig-
ure 3D). Interestingly, this increase in perisomatic GAD67 was

not observed around active fear neurons (Figure 3E). The selec-

tive increase in perisomatic GAD67 around silent fear neurons

seemed to be caused by a selective increase in the number of

inhibitory synapses (Figures S2A and S2B). Thus, our data reveal

that extinction can cause the target-specific remodeling of peri-

somatic inhibitory synapses in the BA, with extinction-induced

changes in perisomatic GAD67 matching the activation states

of the postsynaptic fear neurons.

Fear Extinction Increases Perisomatic Parvalbumin
around Silent BA Fear Neurons
We decided to further investigate the nature of the extinction-

induced remodeling of perisomatic inhibitory synapses in the

BA. Parvalbumin-positive interneurons (PV+) are the predomi-

nant interneuron type in the BA and form perisomatic synapses

around BA excitatory projection neurons (McDonald and

Betette, 2001). Extinction did not change the expression of

PV in the soma of BA interneurons (Figures 4A and 4B). Next,

we analyzed the presence of PV around the soma of BA fear

neurons. We verified that our perisomatic PV immunolabeling

represented perisomatic synapses (Figure S3A). Consistent

with the extinction-induced increase in perisomatic GAD67,
vember 20, 2013 ª2013 Elsevier Inc. 1057
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Figure 4. Fear Extinction Increases Periso-

matic Parvalbumin around Silent BA Fear

Neurons

(A) Representative image of a parvalbumin-posi-

tive (PV+) interneuron soma in the basal amygdala

(BA; scale bar, 10 mm).

(B) Extinction had no effect on somatic expression

of PV in the BA (p = 0.064).

(C and D) Left: representative images of peri-

somatic PV immunolabeling around silent BA fear

neurons (C, GFP+Zif�) and active BA fear neurons

(D, GFP+Zif+). Three images are shown for each

fear neuron (top: GFP in green, PV in gray; middle:

Zif in red, PV in gray; bottom: PV mask in black,

value for that neuron obtained by dividing black

pixels by perimeter of yellow outline). Scale bars,

10 mm. Right: extinction increased perisomatic PV

around silent fear neurons (C, p = 0.0061) but not

around active fear neurons (D, p = 0.18). Graphs

show means ± SEM. **p < 0.01.

See also Figure S3.
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extinction also increased perisomatic PV around the silent fear

neurons (Figure 4C). Again, there was no significant increase

around the active fear neurons (Figure 4D). The effects of

extinction on perisomatic PV seemed to reflect changes in syn-

apse numbers (Figures S3B and S3C). Importantly, the increase

in perisomatic PV that we detected with image analysis is

similar to that reported to increase perisomatic inhibition

using electrophysiological analysis (Gittis et al., 2011; Kohara

et al., 2007). Thus, our data suggest an extinction-induced

increase in perisomatic inhibition underlies the decreased

number of active BA fear neurons and the resulting silencing

of the fear memory circuit. This reveals a direct connection

between extinction-induced structural and functional changes

in the BA.

The Extinction-Induced Increase in Perisomatic
Parvalbumin Reflects New Learning
We asked whether the extinction-induced increase in periso-

matic PV might have reversed any fear conditioning-induced

changes in those synapses, which would indicate that BA

perisomatic inhibitory synapses were part of the original fear

circuit. To address this question, we performed a separate

experiment in which we compared a fear conditioned group

(FC) with a home cage group (HC) (Figures 5A and 5B). Consis-

tent with our previous study (Reijmers et al., 2007), BA neurons

activated during fear conditioning were tagged with long-last-

ing expression of GFP (Figure 5C). During retrieval on day 4,

the FC group showed significant freezing (Figure 5D). The

retrieval of contextual fear caused activation of both nontagged

(GFP�Zif+; Figure 5E) and tagged (GFP+Zif+; Figure 5F) neu-
1058 Neuron 80, 1054–1065, November 20, 2013 ª2013 Elsevier Inc.
rons in the BA, with a preferential reacti-

vation of the tagged BA fear neurons

(Figures 5E and 5F). Importantly, we

did not find fear conditioning-induced

changes in perisomatic PV around silent

or active fear neurons (Figures 5G and

5H). These data strongly suggest that
the extinction-induced changes in PV+ perisomatic synapses

constituted a new form of learning that occurred within the

extinction circuit.

Fear Extinction Increases Perisomatic CB1R around
Active BA Fear Neurons
In addition to PV+ perisomatic synapses, the BA also contains

perisomatic inhibitory synapses that originate from cholecysto-

kinin (CCK) interneurons (Yoshida et al., 2011). We therefore

examined whether fear extinction also affected perisomatic

CCK+ synapses. Extinction did not change the expression of

CCK in the soma of BA interneurons (Figures 6A and 6B). In

addition, perisomatic CCK around fear neurons, either silent

or active, was not altered by fear extinction (Figures 6C, 6D,

S4A, and S4B). Fear conditioning itself also did not change

perisomatic CCK in the BA (Figures S4C and S4D). We next

examined whether extinction might have affected CCK+ periso-

matic synapses without changing CCK levels. Recently, it was

discovered that BA perisomatic synapses positive for CCK,

but not PV, contain a unique enrichment of proteins involved

in endocannabinoid signaling, including cannabinoid receptor

type 1 (CB1R) (Yoshida et al., 2011). Since CB1R in the BA

have been implicated in fear extinction (Marsicano et al.,

2002), we examined whether perisomatic CB1R presence was

modulated by extinction and whether this modulation was

target-specific. We first confirmed that in the BA our CB1R im-

munolabeling colocalized with our CCK, but not PV, immuno-

labeling (Figure 6E) and that CB1R and CCK colocalized

directly adjacent to the soma (Figure S4E). We did not observe

labeling of CB1R in the soma of BA interneurons, so somatic
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Figure 5. The Extinction-Induced Increase in Perisomatic Parval-

bumin Reflects New Learning

(A) Design of an experiment with a home cage (HC, n = 8) and a fear-condi-

tioned group (FC, n = 8).

(B) Freezing during contextual fear conditioning on day 1. As training

progressed, FC mice showed an increase in their level of freezing (p =

0.0006).

(C) The FC group had a larger number of GFP+ neurons than the HC group in

the basal amygdala (BA, p = 0.0049).

(D) FC mice showed significant freezing during retrieval on day 4 (p = 0.0077).

(E) The FC group had a larger number of GFP�Zif+ neurons than the HC group

(p = 0.036).

(F) The FC group had a larger number of GFP+Zif+ neurons than the HC group

(p = 0.0043). Only in the FC group was the percentage of GFP+ZIF+ neurons

higher than chance level, confirming that a subset of BA fear neurons

was reactivated during retrieval (HC: p = 0.23; FC: p = 0.016). Chance level

was determined by using the percentage of Zif+ among GFP� neurons as

shown in (E).

(G and H) Fear conditioning had no effect on perisomatic PV around either type

of tagged BA neuron. (G) GFP+Zif�, p = 0.10. (H) GFP+Zif+, p = 0.49. Graphs

show means ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001.
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expression of CB1R was not quantified. Perisomatic CB1R

presence around the silent fear neurons was similar in the FC

and FC+EXT groups (Figures 6F and S4F). Intriguingly, extinc-

tion increased perisomatic CB1R around the active fear neu-

rons (Figures 6G and S4G). This effect of extinction appeared

to constitute a new form of learning, as fear conditioning itself

did not change perisomatic CB1R in the BA (Figures S4H and

S4I). Since CB1R inhibit the release of g-aminobutyric acid

(GABA) (Katona et al., 2001), these results suggest that the

extinction-induced upregulation of perisomatic CB1R facilitated

the persistence of a small subset of active BA fear neurons in

the extinction group (Figure 1J).
Ne
Fear Extinction Might Alter Perisomatic Inhibition
Outside of the Fear Circuit
The results of our analysis of the effects of extinction on silent

(GFP+Zif�) versus active (GFP+Zif+) fear neurons are summa-

rized in Figure 7. To explore whether fear extinction might also

alter perisomatic inhibition outside of the fear circuit, we quanti-

fied perisomatic markers around GFP�Zif+ neurons in the BA.

We found that extinction increased PV and CB1R around

GFP�Zif+ cells but had no significant effect on perisomatic

GAD67 and CCK (Figure S5A). This result has two possible ex-

planations that are not mutually exclusive. First, it suggests

that fear extinction might alter perisomatic inhibition around BA

neurons that are not part of the fear circuit. One possibility is

that fear extinction also changes perisomatic inhibition of BA

neurons that are part of the extinction circuit (Herry et al.,

2008). These extinction neuronswere reported to be silent during

fear conditioning and subsequently activated during extinction,

so they would not be tagged with GFP in our experimental

design. Second, some GFP�Zif+ neurons might actually be

fear neurons that were not tagged with GFP. For example, neu-

rons with a relatively low level of c-fos promoter activation during

fear conditioning might express c-fos protein and tTA protein,

but the tTA protein level might be too low to activate the tetO pro-

moter and trigger GFP expression. We tried to find support in

favor of one of these two explanations by correlating the number

of GFP�Zif+ neurons with freezing levels during the extinction

trials. If a significant portion of the GFP�Zif+ neurons were

extinction neurons, then a negative correlation with freezing dur-

ing extinction might be observed. On the other hand, if a signif-

icant portion of the GFP�Zif+ neurons were nontagged active

fear neurons, then a positive correlation with freezing during

extinction might be observed similar to the positive correlation

found for GFP+Zif+ neurons (Figure S1D). We did not find a sig-

nificant correlation, either positive or negative (Figure S5B). This

suggests that GFP�Zif+ neurons might consist of a mix of

neurons with varying functions. Table S1 summarizes the extinc-

tion-induced perisomatic changes observed around the three

types of BA neurons, showing that the changes around

GFP�Zif+ neurons differ from the changes around fear neurons,

either silent (GFP+Zif�) or active (GFP+Zif+). The different

perisomatic profiles around the three BA cell types illustrate

the target-specific nature of fear extinction-induced perisomatic

synapse remodeling.

DISCUSSION

Our findings reveal that remodeling of perisomatic inhibitory syn-

apses located immediately around fear neurons in the basal

amygdala occurs during fear extinction. These perisomatic syn-

apses represent a site where the circuits for fear extinction and

fear storage connect. The direct anatomical and functional rela-

tionship between the perisomatic synapses and the fear neurons

suggests a straightforward mechanism for the silencing of fear

circuits. Perisomatic inhibitory synapses therefore provide an

attractive therapeutic target for improving the efficacy of fear

extinction in humans treated with exposure therapy. In addition,

we found that extinction might alter perisomatic inhibition

outside of the fear circuit, possibly contributing to the behavioral
uron 80, 1054–1065, November 20, 2013 ª2013 Elsevier Inc. 1059
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Figure 6. Fear Extinction Increases Periso-

matic CB1R around Active BA Fear Neurons

(A) Representative image of cholecystokinin-pos-

itive (CCK+) interneuron soma in the basal amyg-

dala (BA; scale bar, 10 mm).

(B) Extinction had no effect on somatic expression

of CCK in the BA (p = 0.25).

(C and D) Extinction had no effect on perisomatic

CCK around silent (C, GFP+Zif�, p = 0.25) or

active BA fear neurons (D, GFP+Zif+, p = 0.42).

(E) Top: colocalization of perisomatic CB1R (red)

and perisomatic CCK (gray) in the BA. Bottom: no

colocalization of perisomatic CB1R (red) and per-

isomatic PV (gray) was detected in the BA. Scale

bars, 10 mm.

(F and G) Left: representative images of peri-

somatic CB1R immunolabeling around silent BA

fear neurons (F, GFP+Zif�) and active BA fear

neurons (G, GFP+Zif+). Three images are shown

for each fear neuron (top: GFP in green, CB1R in

gray; middle: Zif in red, CB1R in gray; bottom:

CB1R mask in black, value for that neuron

obtained by dividing black pixels by perimeter of

yellow outline). Scale bars, 10 mm.Right: extinction

increased perisomatic CB1R expressed in CCK

terminals around active fear neurons (G, p = 0.036)

but not around silent fear neurons (F, p = 0.19).

Graphs show means ± SEM. *p < 0.05.

See also Figure S4.
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effects of extinction by altering perisomatic inhibition of extinc-

tion neurons (Herry et al., 2008). The fine-tuned nature of the

observed perisomatic synapse remodeling provides an impor-

tant insight into how behavior can sculpt the flow of information

in the brain.

Notably, the extinction-induced remodeling of perisomatic

synapses was interneuron and target-neuron specific, and the

predicted changes in the balance of perisomatic inhibition

matched the state of the target fear neurons in two ways (Fig-

ure 7). First, the silent state of fear neurons (GFP+Zif�) corre-

sponded to an extinction-induced increase in perisomatic PV,

which is predicted to increase perisomatic inhibition (Gittis

et al., 2011; Kohara et al., 2007). Second, the active state of

fear neurons (GFP+Zif+) corresponded to an extinction-induced

increase in perisomatic CB1R. We propose that the CB1R in-

crease prevented a subset of active fear neurons from switching

into silent fear neurons by decreasing GABA release from CCK

terminals (Katona et al., 2001). The CB1R-mediated inhibition

of GABA release around active fear neurons could strengthen

their future activation by facilitating long-term potentiation

of excitatory synapses (Carlson et al., 2002). Therefore, an
1060 Neuron 80, 1054–1065, November 20, 2013 ª2013 Elsevier Inc.
intriguing possibility is that BA fear neu-

rons that remain active after contextual

fear extinctionmight, over time, reawaken

the fear circuit and limit the effectiveness

of exposure therapy by triggering sponta-

neous recovery (Myers and Davis, 2007).

The subset of fear neurons that re-

mained active after extinction did not

trigger freezing during the retrieval test
(Figures 1G and 1J). This suggests that, in addition to BA periso-

matic synapses, an additional downstream site exists where the

extinction circuit inhibits the fear circuit. This downstream site

might be located in the central amygdala, which contains neu-

rons that mediate the effects of BA fear neurons on freezing.

Previous studies support a model in which central amygdala

neurons are inhibited by intercalated interneurons, which

become more active as a result of infralimbic prefrontal cortex

activation during extinction (Amano et al., 2010; Likhtik et al.,

2008; Milad and Quirk, 2002). Though we did not observe extinc-

tion-induced changes in the activation of brain regions upstream

of the basal amygdala (Figure 2), a role for these upstream brain

regions in fear extinction remains probable. For example, recent

studies have found that projections from the prefrontal cortex

and the hippocampus to the basal and lateral amygdala can

regulate to what extent an extinguished fear memory is retrieved

(Knapska et al., 2012; Orsini et al., 2011). It needs to be deter-

mined how the numerous neural circuits involved in fear

extinction, located in various brain regions such as the prefrontal

cortex, hippocampus, and amygdala, work together to silence

the fear circuit. We propose that the approach used in this study
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Extinction increases the ratio of silent (GFP+Zif�) versus active (GFP+Zif+) fear

neurons in the basal amygdala (BA), thereby causing the elimination of

behavioral expression of fear as indicated by the absence of freezing during

retrieval. In this model, the increased number of silent fear neurons is caused

by increased perisomatic inhibition from PV neurons. The increase in CB1R

occurs around a selective subset of BA fear neurons that as a result remain

active because of increased CB1R-mediated disinhibition. Inhibition is rep-

resented by the ‘‘�’’ sign.

See also Figure S5 and Table S1.
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can be more widely applied for this purpose. Identifying addi-

tional elements of the fear circuit that are silenced by extinction

might enable the reconstruction of multiple functional extinction

circuits, each responsible for silencing a specific element of the

fear circuit. The discovery of structural changes in BA periso-

matic synapses lays the foundation for reconstructing at least

one coherent functional extinction circuit, with future studies

determining which neural circuits need to be recruited during

extinction to enable the target-specific remodeling of periso-

matic synapses around BA fear neurons.

Does fear extinction decrease fear by suppressing or erasing

the fear memory circuit? If extinction-induced changes in periso-

matic inhibitory synapses constitute a form of erasure, then they

should reverse changes induced by fear conditioning at these

synapses. We did not find evidence for this, as fear conditioning

itself did not change the perisomatic presence of PV, CCK, and

CB1R. This strongly suggests that the observed changes in peri-

somatic synapses constituted a new form of learning that led to

suppression of the fear memory circuit. This leaves open the

possibility that in our study the fear memory circuit remained

completely intact, for example, by retaining a pattern of strength-

ened and weakened excitatory synapses induced by fear condi-

tioning. In contrast with our findings, two recent papers reported

examples of possible erasure of components of the fear memory

circuit. One study using mice found that extinction reversed

changes in dendritic spines that were induced by fear condition-

ing (Lai et al., 2012). It should be noted that the reported spine

dynamics occurred in the frontal association cortex, a brain re-

gion that has not been firmly established yet as an essential

component of the fear memory circuit. Nevertheless, this study

provides an important first step toward identifying a mechanism
Ne
by which fear memory circuits can be erased. Another recent

study using human subjects reported that a certain behavioral

extinction protocol, in which extinction follows a retrieval trial,

can erase a memory trace in the amygdala (Agren et al., 2012).

However, in this study, the erasure of the memory trace was in-

ferred from changes in the activation state of the complete baso-

lateral amygdala. Our data illustrate how extinction-induced

changes in local inhibition within the basal amygdala might alter

the activation state of the complete brain region without erasing

the fear memory circuit, in which case it should be considered

suppression. The question of suppression versus erasure has

important implications for the treatment of fear disorders, as a

treatment based on a form of erasure might make the return of

debilitating fear less likely. Future studies using animal models

will be invaluable to address the suppression versus erasure

distinction, because validating a true mechanism for fear mem-

ory erasure will require more data collected at the cellular, sub-

cellular, and ultimately the molecular level.

Our findings shed light on two proposed molecular mecha-

nisms of extinction. Studies in humans and rodents have found

that both CB1R (Gunduz-Cinar et al., 2013; Heitland et al., 2012;

Marsicano et al., 2002; Rabinak et al., 2013) and brain-derived

neurotrophic factor (BDNF) (Andero et al., 2011; Chhatwal et al.,

2006; Soliman et al., 2010) signaling in the BA support fear

extinction. CB1R and BDNF signaling can both occur at inhibi-

tory and excitatory synapses, and it is unclear which synapse

type mediates their effects on fear extinction. In the case of

CB1R signaling, the perisomatic CCK+ inhibitory synapses pro-

vide a plausible site of action, since the major components of

CB1R signaling in the BA are highly enriched and colocalized

in these synapses (Yoshida et al., 2011). However, the increase

in perisomatic CB1R around the remaining active fear neurons

seems in contradiction with a potential role for perisomatic

CB1R signaling in the reduction of fear. We found that extinc-

tion might also increase CB1R outside of the fear circuit. If

this increase occurred around extinction neurons (Herry et al.,

2008), then it might have contributed to the increased activation

of extinction neurons. A fear extinction role for CB1R at periso-

matic inhibitory synapses would be in agreement with a recent

finding that expression of CB1R at excitatory synapses is not

sufficient to support fear extinction (Ruehle et al., 2013). In the

case of BDNF, it is interesting to note that postsynaptic release

of BDNF promotes the formation of perisomatic PV+ synapses

in the cortex (Hong et al., 2008; Huang et al., 1999; Jiao et al.,

2011; Kohara et al., 2007). We therefore propose that BDNF

signaling in the BA supports fear extinction by increasing the

number of perisomatic PV+ synapses around BA fear neurons,

which is predicted to increase perisomatic inhibition (Gittis

et al., 2011; Kohara et al., 2007). A better understanding

of the molecular mechanisms used by BDNF to increase PV+

perisomatic synapse numbers could lead to new therapeutic

targets for the treatment of fear disorders. Though BDNF acts

on many types of synapses, both inhibitory and excitatory, it

seems to use different signaling pathways within each type of

synapse (Gottmann et al., 2009; Matsumoto et al., 2006). It

is therefore feasible that targets will be identified that specif-

ically modulate the effect of BDNF on perisomatic inhibitory

synapses.
uron 80, 1054–1065, November 20, 2013 ª2013 Elsevier Inc. 1061
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A potential role for inhibitory synapse plasticity in shaping pat-

terns of neural circuit activation has recently become more

appreciated (Kullmann et al., 2012). Inhibitory interneurons can

be highly interconnected, resulting in synchronized firing (Bartos

et al., 2007), and are in many brain regions outnumbered by

excitatory neurons, with a single interneuron contacting as

many as a 1,000 excitatory neurons (Miles et al., 1996). These

traits make inhibitory interneurons seem ill-suited to exert finely

targeted effects on individual excitatory neurons. The discovery

of various forms of inhibitory synapse plasticity has made clear

how inhibitory interneurons can specifically modulate the activa-

tion of individual target neurons (Kullmann et al., 2012). Periso-

matic inhibitory synapses are especially well-positioned to

enable this ‘‘personalized inhibition’’ by using their ability to sup-

press action potentials in the target neuron (Miles et al., 1996),

thereby functioning as a brake that keeps the excitatory ‘‘gas

pedal’’ in check. If perisomatic synapses indeed participate in

the fine-tuned sculpting of patterns of neural circuit activation,

then they should be subjected to forms of target-specific plas-

ticity so that two excitatory neurons receiving perisomatic

synapses from the same cluster of interneurons can be differen-

tially inhibited. Recently, target-specific properties have been re-

ported for perisomatic PV+ synapses in the striatum (Gittis et al.,

2011) and for perisomatic CCK+ synapses in the entorhinal cor-

tex (Varga et al., 2010). Our study adds to the understanding of

perisomatic synapse dynamics in three ways. First, our study

shows that target-specific changes can differentially affect PV

and CCK perisomatic synapses around the same type of neuron.

Second, we demonstrate target-specific modulation of periso-

matic CB1R. Last and most important, our study reveals that

behavior can trigger target-specific changes in perisomatic syn-

apses. Behavior-induced target-specific plasticity of periso-

matic synapsesmay be a central feature of neural circuits across

the brain.

In summary, we discovered that contextual fear extinction

causes the remodeling of perisomatic inhibitory synapses

located directly around fear neurons in the basal amygdala.

This discovery provides an anatomical and functional connec-

tion between the extinction circuit and the fear circuit. Since

perisomatic synapses directly impinge on the fear circuit, they

provide an attractive target for modulating maladaptive fear. In

addition, our study reveals a mechanism by which behavior

can use inhibitory synapse plasticity to alter the flow of informa-

tion through the neural circuits. An important goal for future

studies will be to determine the extent to which silencing of BA

fear neurons is achieved by changes in perisomatic inhibitory

synapses versus changes in other inhibitory and excitatory syn-

apses and changes in neuronal excitability.
EXPERIMENTAL PROCEDURES

Animals

All animal procedures were performed in accordance with the National

Institutes of Health Guide for the Care and Use of Laboratory Animals and

were approved by the Tufts University Institutional Animal Care and Use Com-

mittee. The TetTag mouse line used in this study was heterozygous for two

transgenes: c-fos promoter-driven tetracycline transactivator (cfosP-tTA;

Jackson Laboratory stock number 008344) and a tet operator-driven fusion

of histone2B and GFP (tetO-His2BGFP; Jackson Laboratory stock number
1062 Neuron 80, 1054–1065, November 20, 2013 ª2013 Elsevier Inc
005104). TetTag mice were backcrossed to a C57Bl6/J background. Thy1-

YFP mice were obtained from Jackson Laboratory (line H; stock number

003782). Mice had food and water ad libitum and were socially housed (three

to five animals per cage) until the start of the experiment, which was at an age

of at least 12weeks.Micewere kept on a regular light-dark cycle, and all exper-

imental manipulations were done during the light phase. Mice were raised on

food with doxycycline (40 mg doxycycline/kg chow). One week before fear

conditioning, all mice were individually housed, and 4 days before fear condi-

tioning, doxycycline was removed from the food. After the last fear condition-

ing trial on day 1,micewere put on foodwith a high dose of doxycycline (1 g/kg)

to rapidly block the tagging of neurons activated after fear conditioning. On

day 2 mice were put back on the regular dose of doxycycline (40 mg/kg).

Behavior

A total of 48 TetTag mice were used for the study. Experiment 1 consisted of a

fear conditioning group (FC, n = 15) and a fear conditioning followed by extinc-

tion group (FC+EXT, n = 17). Experiment 2 consisted of a home cage group

(HC, n = 8) and a fear conditioning group (FC, n = 8).

Experiment 1

The design of experiment 1 is summarized in Figure 1C. On day 1, mice were

subjected to contextual fear conditioning consisting of three training trials (S1,

S2, and S3) with 3 hr between each trial. The total duration of each training trial

was 500 s. A training trial started with placing the mouse in a square chamber

with grid floor (Coulbourn Instruments; H10-11RTC, 120W 3 100D 3 120H).

At 198 s, 278 s, 358 s, and 438 s, a foot shock was delivered (2 s, 0.70 mA).

On days 2 and 3, FC+EXT mice were subjected to four extinction trials per

day (day 2: E1 to E4; day 3: E5 to E8). Each extinction trial lasted 1,800 s

with a trial interval of 2 hr. For each extinction trial, mice were placed in the

same box used for fear conditioning without receiving foot shocks. On day

4, FC and FC+EXT mice were tested over 500 s during a single retrieval test.

For the retrieval test, mice were placed in the same box used for fear condition-

ing without receiving foot shocks.

Experiment 2

The design of experiment 2 is summarized in Figure 5A. The FC group in exper-

iment 2 was subjected to the same protocol as the FC group in experiment 1.

The HC group consisted of mice that stayed in their home cage during the

entire experiment. HC mice were perfused at the same time as the FC mice.

Quantification of Freezing

Freezing behavior was measured using a digital camera connected to a com-

puter with Actimetrics FreezeFrame software. The bout length was 1 s and the

threshold for freezing behavior was determined by an experimenter blind to

experimental conditions and animal group. Freezing scores were obtained

by averaging freezing during minutes 2 and 3 of each trial.

Tissue Preparation and Immunohistochemistry

Ninety minutes after retrieval testing, mice were deeply anesthetized with

ketamine/xylazine and transcardially perfused with 0.1 M phosphate buffer

(PB) followed by 4%paraformaldehyde (PFA 4%) dissolved in 0.1MPB. Brains

were extracted and postfixed in PFA 4% for 24 hr. Brains were transferred to

30% sucrose for 48–72 hr before slicing 20 mm coronal sections of the entire

brain using a cryostat. Sections were stored in cryoprotectant at �20�C until

use. Free-floating sections were rinsed extensively in PBS with 0.25% Triton

X-100 (PBS-T). Sections were blocked for 1 hr at room temperature in PBS-

T with 10% normal goat serum (or 3% donkey serum for CB1R). Sections

were incubated in rabbit anti-Zif268 (Santa-Cruz; polyclonal; 1:3,000) with

either mouse anti-GAD67 (Millipore; monoclonal; 1:10,000), mouse anti-PV

(Millipore; monoclonal; 1:2,000), mouse anti-CCK/Gastrin (Center for Ulcer

Research and Education UCLA; monoclonal; 1:1,000), or goat anti-CB1 (kind

gift of Dr. K. Mackie; polyclonal; 1:2,000) (Harkany et al., 2005). Additional pri-

mary antibodies used were rabbit anti-CamKII (kind gift of Dr. M. Jacob; poly-

clonal; 1:2,000) and rabbit anti-Rab3b (kind gift of Dr. T. Südhof; polyclonal;

1:4,000). Primary antibodies were diluted in the blocking solution, incubated

at 4�C for 72 hr, and rinsed three times for 15 min in PBS-T. Secondary anti-

bodies (Jackson ImmunoResearch; goat anti-rabbit 549 1/1,500, goat anti-

mouse 647 1/500, donkey anti-rabbit 649 1/500, donkey anti-goat 549

1/500) were diluted in the blocking solution and were then applied to the sec-

tions for 2 hr at room temperature followed by three rinses for 15min in PBS-T.
.
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Sections were mounted on slides and coverslipped using DAPI mounting

media to label cell nuclei and stored at 4�C.

Confocal Microscopy

A confocal laser-scanning microscope was used for all image acquisition

(Nikon A1R). The settings for PMT, laser power, gain, and offset were identical

between experimental groups. Images of cells expressing GFP and/or Zif

were collected for the basal amygdala (BA, minimum of seven sections per

mouse), hippocampal CA1 (dCA1 and vCA1, four sections per mouse), and

the infralimbic prefrontal cortex (IL, four sections per mouse). For the detec-

tion of perisomatic GAD67, a 203 objective was used and image stacks were

collected with a 2 mm step. For the detection of the other perisomatic markers

(PV, CCK and CB1), a 403 objective was used and image stacks were

collected with a 1 mm step. For the detection of PV, Rab3b, CCK, and CB1

around neurons from Thy1-YFP mice, a 603 objective was used and image

stacks were collected with a 1 mm step.

Image Analysis

All quantification was performed blind to experimental groups.

Quantification of Activated Cells

Selection of GFP-labeled cells was designed to only include excitatory neu-

rons (Figures S1A and S1B). ImageJ software was used to select and count

the total number of DAPI-, GFP-, and Zif-positive nuclei and nuclei double pos-

itive for GFP and Zif (Figure S1C). In order to avoid bias, all three cell types

(GFP+Zif�, GFP+Zif+, GFP�Zif+) were selected from the same pictures,

and the threshold settings for GFP and Zif were identical across all mice.

Quantification of Soma Expression

To quantify expression of GAD67, PV, and CCKwithin the soma of basal amyg-

dala interneurons (Figures 3C, 4B, and 6B), we outlined approximately 20

soma for each mouse and calculated average pixel intensity using ImageJ.

Somatic expression of CB1R was not quantified since no labeling of CB1R

was observed in the soma of basal amygdala interneurons.

Quantification of Pixels and Clusters Positive for Perisomatic

Markers

One mouse from the FC+EXT group was excluded from the perisomatic

marker analysis, since no active fear neurons (GFP+Zif+) were found in the

basal amygdala of this mouse. For each marker (GAD67, PV, CCK, and

CB1R), tagged fear neurons (GFP+Zif� and GFP+Zif+) and nontagged neu-

rons (GFP�Zif+) were randomly selected in the basal amygdala, and confocal

images were analyzed at the z plane where the diameter of the nucleus was

largest. The average number of analyzed cells per mouse for each perisomatic

marker is summarized in Table S2. A mask for each perisomatic marker was

generated by thresholding the image of the perisomatic marker. For each peri-

somatic marker, we used the same threshold settings for all the counted cells

in order to avoid any bias. This threshold was the same for both the pixel and

cluster countings. Threshold settings only differed between the different peri-

somatic markers, since the signal intensity varied across different antibodies.

The mask of the perisomatic marker was used to draw an oval-shaped outline

that included all the pixels positive for the perisomatic marker around a single

neuron. The number of positive pixels and positive clusters (groups of adjacent

positive pixels) within the outline was counted using ImageJ. To normalize for

variation in size of neurons, we divided the numbers of pixels and clusters by

the outline perimeter.

Statistics

Data are presented as means ± SEM and were analyzed using ANOVAs

repeated-measures and two-tailed t test (unpaired or paired) for normally

distributed variables to evaluate statistical significance with p < 0.05 as level

of statistical significance. See Table S2 for the average number of analyzed

cells per mouse for each perisomatic marker and Table S3 for detailed statis-

tical results.
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