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SUMMARY

Voltage-gated potassium (Kv) channels are involved
in action potential (AP) repolarization in excitable
cells. Exogenous application of membrane-derived
lipids, such as arachidonic acid (AA), regulates the
gating of Kv channels. Whether membrane-derived
lipids released under physiological conditions have
an impact on neuronal coding through this mecha-
nism is unknown. We show that AA released in
an activity-dependent manner from postsynaptic
hippocampal CA3 pyramidal cells acts as retro-
grade messenger, inducing a robust facilitation of
mossy fiber (Mf) synaptic transmission over several
minutes. AA acts by broadening presynaptic APs
through the direct modulation of Kv channels. This
form of short-term plasticity can be triggered
when postsynaptic cell fires with physiologically
relevant patterns and sets the threshold for the
induction of the presynaptic form of long-term
potentiation (LTP) at hippocampal Mf synapses.
Hence, direct modulation of presynaptic Kv chan-
nels by activity-dependent release of lipids serves
as a physiological mechanism for tuning synaptic
transmission.

INTRODUCTION

Synaptic transmission mainly flows anterogradely from the

action-potential-dependent release of neurotransmitters to

the activation of specific postsynaptic membrane receptors.

Many neurons can also modulate the strength of their synaptic

inputs through the release of retrograde messengers (Regehr

et al., 2009). Retrograde messengers, including membrane-

derived lipids, gases, peptides, growth factors, or conventional

neurotransmitters, can be released from postsynaptic neurons

in response to activity and diffuse to presynaptic terminals

where they interact with specific targets in order to regulate
neurotransmitter release (Regehr et al., 2009). In the CNS,

most of the reported lipid-mediated retrograde modulation of

synaptic transmission involves endocannabinoids and cannabi-

noid type 1 receptors (CB1Rs) (Wilson and Nicoll, 2002), which

are present in both GABAergic and glutamatergic neurons (Her-

kenham et al., 1990; Kawamura et al., 2006; Marsicano and

Lutz, 2006). Postsynaptic calcium rise leads to the production

of endogenous lipids (2-AG and anandamide), which diffuse

into the presynaptic terminal and activate CB1Rs, leading to

the inhibition of neurotransmitter release (Kano et al., 2009;

Marsicano and Lutz, 2006). Other membrane receptors acti-

vated by lipids, such as transient receptor potential cation

channel subfamily V member 1 (TRPV1) and lysophosphatidic

acid receptor 2 receptors, have also been reported to modulate

synaptic transmission (Gibson et al., 2008; Trimbuch et al.,

2009).

Apart from their action through specific membrane receptors,

membrane-derived lipids are also known to modulate ion chan-

nel function by direct interaction with the ion channel (Boland

and Drzewiecki, 2008). Lipids are known to modulate voltage-

dependent calcium channels (Roberts-Crowley et al., 2009),

potassium channels (Oliver et al., 2004), glycine receptors (Loz-

ovaya et al., 2005), and GABAA receptors (Sigel et al., 2011).

Membrane-derived lipids may also represent the primary acti-

vating ligands of TRP channels (Hardie, 2007; Kukkonen, 2011)

or two-pore domain potassium channels (Besana et al., 2005).

However, contrasting with the large number of reports on

direct modulation of ion channels by membrane-derived lipids,

the physiological conditions under which this mechanism is

recruited remains elusive.

To address this question, we focused on hippocampal mossy

fiber (Mf) CA3 synapses. The efficacy of Mf-CA3 synaptic trans-

mission is tightly controlled by presynaptic Kv channels, and

Mf-CA3 presynaptic terminals are amenable to patch-clamp re-

cordings (Geiger and Jonas, 2000). We have identified a retro-

grade signaling mechanism which results in robust short-term

potentiation of synaptic transmission in physiological condi-

tions of activity of hippocampal circuits. This potentiation is

mediated by the activation of phospholipase A2 and the release

of arachidonic acid (AA) and is not dependent on any known

membrane lipid receptor. Using patch-clamp recordings from
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Figure 1. Postsynaptic Depolarization

or Postsynaptic Action Potential Firing

Induces Potentiation at Mf-CA3 Synaptic

Transmission

(A) Illustration of a hippocampal slice with

recording (blue, in a CA3 pyramidal cell) and

stimulating electrodes (green, inside the dentate

gyrus).

(B) Sample traces (average of 30 sweeps) of Mf-

EPSCs before and 50 or 200 after the depolarization
step (from �70 to �10 mV).

(C) Time course of amplitudes of individual Mf-

EPSCs recorded in the same cell as in (B).

(D) Summary time course of normalizedMf-EPSCs

for experiments illustrated in (B) and (C) (n = 12).

(E) DPE of Mf-EPSCs can be induced by a burst of

APs at theta frequency (bursts of five APs deliv-

ered at 25 Hz, repeated six times every 140 ms).

(F) Summary time course of normalizedMf-EPSCs

for experiments illustrated in (E) (n = 11).

(G) A natural pattern of APs recorded in vivo from a

CA3 pyramidal place cell was converted to current

steps that were used to evoke APs in the post-

synaptic CA3 pyramidal. The APs recorded in a

CA3 pyramidal cell in the current clamp mode are

shown in blue.

(H) Sample traces of Mf-EPSCs illustrating that

DPE can be induced by a natural pattern of APs

firing of CA3 pyramidal cells.

(I) Summary time course of normalized Mf-EPSCs

for experiments illustrated in (G) (n = 9).
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presynaptic boutons and focal AA uncaging, we observed that

AA action mainly results in a direct inactivation of presynaptic

Kv channels. This leads to the broadening of the presynaptic

action potential (AP) and subsequent increase in transmitter

release. Our results indicate that modulation of Kv channels

by activity-dependent released lipids constitutes a powerful

mechanism for tuning synaptic transmission, thus demon-

strating the physiological significance of neuronal signaling

mechanisms involving direct modulation of voltage-gated ion

channels by lipids.

RESULTS

Retrograde Signaling atMossy Fiber-CA3Pyramidal Cell
Synapses
Depolarization of neuronal membranes results in the calcium-

dependent production of membrane-derived lipids, such as

endocannabinoids mediating depolarization-induced suppres-

sion of inhibition (DSI) (Regehr et al., 2009; Wilson and Nicoll,

2002). We tested whether a similar protocol induced changes

in synaptic transmission at Mf-CA3 synapses, which lack pre-

synaptic CB1Rs (Hofmann et al., 2008; Katona et al., 2006).

The application of a depolarization step from �70 to �10 mV

for 9 s in CA3 pyramidal cells induced a robust potentiation of
788 Neuron 81, 787–799, February 19, 2014 ª2014 Elsevier Inc.
Mf-EPSCs (175% ± 13%, n = 12, p =

0.0005) (Figures 1A–1D), which peaked

within 2–3 min and lasted up to 10–

15 min. By analogy with DSI, we named
this form of plasticity depolarization-induced potentiation of

excitation (DPE). DPE varied in its magnitude with the duration

of the depolarizing step (Figures S1A and S1B available online).

The protocol could be repeated in the same cell (Figure S1C),

and DPE magnitude was similar for two Mfs inputs indepen-

dently stimulated and recorded in the same CA3 pyramidal

cell (Figures S1D–S1F). However, DPE was not observed at

associational/commissural (A/C) fiber synapses onto CA3 pyra-

midal cells (Figures S1G and S1H). Because a 9 s depolarizing

step may not pertain to a physiological stimulus, we tested

whether AP discharge in CA3 pyramidal cells also induced

short-term potentiation of Mf-EPSCs. First, we applied a

sequence of six bursts of five APs at 25 Hz in CA3 pyramidal

cells at the frequency of theta oscillations (Buzsáki, 2005).

This mild protocol induced transient potentiation of Mf-EPSCs

(129% ± 9%, n = 11, p = 0.0137) (Figures 1E and 1F) to com-

parable levels as with a 9 s depolarization step with the same

K+-based intracellular solution (145% ± 16%, n = 11, p =

0.39). A similar potentiation could also be observed with bursts

of spikes triggered by burst stimulation of Mf-CA3 synapses

(eight stimulations at 25 Hz repeated six times at theta fre-

quency; 136% ± 9%, n = 13) (Figures S1J–S1L). The facilitation

induced by postsynaptic spikes in this protocol could be sepa-

rated from the potent and short-lasting posttetanic potentiation



Figure 2. DPE Is Expressed Presynaptically

(A) Sample traces of paired pulse responses

(100 ms interval) before and after DPE.

(B) Bar graph summarizing the values of PPR

before and after DPE (n = 6, *p = 0.03, Wilcoxon

match pairs test).

(C) Bar graph summarizing the change in CV2

before and after DPE (n = 20, *p = 0.0018,

Wilcoxon match pairs test). Values are presented

as mean ± SEM of n experiments.

(D) Sample traces illustrating themarked reduction

of synaptic failures (stimulation without detectable

EPSCs) after DPE.

(E) Bar graph summarizing the significant reduc-

tion of synaptic failures after DPE (n = 14, *p =

0.021, Wilcoxon match pairs test).

(F) Sample traces of Mf-NMDA-EPSCs (recorded

at �70 mV and in 0.3 mM Mg2+) recorded before

and after DPE induction.

(G) Summary time course for experiments illus-

trated in (C) (n = 8).

(H) DPE is similarly observed when recording

Mf-EPSCs (essentially AMPA-EPSCs; n = 12) or

isolated NMDA or Kainate-EPSCs (n = 8 and n = 6,

respectively).
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(Nicoll and Schmitz, 2005) with the use of 20 mM 1,2-bis(o-ami-

nophenoxy)ethane-N,N,N’,N’-tetraacetic acid (BAPTA) (94% ±

5%, n = 10, p = 0.0043, ctr versus BAPTA) in the patch pipette

(see below and Figures S1J–S1L). Finally, we have used a

natural pattern of spike discharge to induce DPE. A single

sequence of APs (63 spikes over 18 s) recorded from a CA3

place cell in a freely moving rat entering in a place field (Isaac

et al., 2009) was replayed into postsynaptic CA3 pyramidal cells

with postsynaptic currents injection, and its effect was continu-

ously recorded while evoking Mf-EPSCs at a frequency of

0.1 Hz (Figures 1G and 1H). This natural sequence of spiking

activity enhanced the amplitude of Mf-EPSCs for several

minutes (131% ± 10%, n = 9, p = 0.0391). These results indicate

that physiologically relevant patterns of CA3 pyramidal cells

firing can trigger DPE.

Next, we evaluated whether DPE was expressed pre- or post-

synaptically. DPE was accompanied with a significant decrease

in paired-pulsed facilitation (baseline, 5.1 ± 0.7; DPE, 3.7 ± 0.4;

n = 6, p = 0.03), coefficient of variation (CV2; baseline: 1.2 ± 0.2;

DPE: 0.6 ± 0.1, n = 20, p = 0.0018), and failure rate (baseline:

19.4% ± 3.6%; DPE 12.9% ± 3.0%, n = 14, p = 0.021) (Figures

2A–2E), strongly suggesting a presynaptic mechanism. In

addition, as expected for a presynaptic increase in glutamate

release, isolatedNMDA-EPSCs andKainate-EPSCswere poten-

tiated to similar extents after DPE (NMDA-EPSCs: 180% ± 15%,

n = 8; Kainate-EPSCs: 148% ± 16%, n = 6, p = 0.52) (Figures

2F–2H). Finally, no potentiation was observed when replacing

Mf simulation with focal UV uncaging of glutamate at the loca-

tion of Mf-CA3 synapses on proximal dendrites (Figures S2A–

S2D). Hence, DPE is induced postsynaptically and expressed

presynaptically.

Next, we tested whether DPE, like DSI, was dependent on an

increase in postsynaptic Ca2+. Replacing 0.2 mM EGTA with

20 mM BAPTA in the patch pipette solution (EGTA: 179% ±

14%, n = 13; BAPTA: 89% ± 9%, n = 10, p = 0.0012) or blocking
L-type Ca2+ channels with nifedipine (10 mM; 87% ± 10%, n = 9,

p = 0.0013) abolished DPE (Figures 3A–3C). Furthermore, we

investigated the nature of the retrograde messenger involved

in DPE. Conventional neurotransmitters that could potentially

be released from the somato-dendritic compartment of CA3 py-

ramidal cells, including glutamate, GABA, or adenosine (Ludwig

and Pittman, 2003), did not appear to be involved in DPE (Table

S1). In keeping with this observation, the infusion of botulinum

toxin C1 (BotoxC1; 0.5 mM) in the intracellular patch solution

to block Ca2+-dependent vesicular release from the somato-

dendritic compartment of CA3 pyramidal cells did not affect

DPE (solvent: 165% ± 23%, n = 5; BotoxC1: 191% ± 20%,

n = 8, p = 0.621) (Figures 3D and 3E). In contrast, BotoxC1

was effective in reducing the amplitude of AMPA-EPSCs both

at Schaffer collateral (Sc)-CA1 and Mf-CA3 synapses (Figures

S3A–S3D; Table S1), most likely by blocking exocytosis

(Lüscher et al., 1999). This suggests that DPE relies on a retro-

grade messenger that is released in a nonvesicular manner,

such as gases (i.e., nitric oxide [NO]) or membrane-derived lipids

(Regehr et al., 2009). Interestingly, although gases and mem-

brane-derived lipids were shown to be capable of spreading

their signal to neighboring neurons (Regehr et al., 2009), we

found that DPE was restricted to the Mf afferences of the depo-

larized cell (DPE: 163% ± 20%; no DPE: 85 ± 4; n = 11) (Figures

3F–3H).

DPE Depends on Membrane-Derived Lipids
Blocking NO synthesis with L-NG-monomethyl arginine citrate

or blocking NO-sensitive guanylyl cyclases with 1H-[1,2,4]

oxadiazolo[4,3-a]quinoxalin-1-one did not affect DPE (n = 12,

p = 0.653) (Figures S3E and S3F; Table S1). To test for an impli-

cation of membrane-derived lipids in DPE, we focused our atten-

tion on enzymes involved in the Ca2+-dependent synthesis or in

the degradation of the most common lipid messengers known,

such as the endocannabinoids 2-AG (2-arachidonoylglycerol)
Neuron 81, 787–799, February 19, 2014 ª2014 Elsevier Inc. 789



Figure 3. DPE Depends on Postsynaptic Calcium Rise and on a Nonvesicular Release Mechanism

(A–C) Sample traces, summary time course and bar illustrating that DPE is blocked by intracellular perfusion with BAPTA (10–20 mM) or bath application of the

VGCC blocker nifedipine (10 mM; BAPTA, n = 10, **p = 0.0012; nifedipine, n = 9, **p = 0.0013, Kruskal-Wallis test).

(D and E) sample traces and summary time course showing that DPE is not blocked by inclusion of BotoxC1 (0.5 mM) in the patch pipette (solvent n = 5;

BotoxC1 n = 8).

(F–H) DPE does not spread to neighboring neurons. CA3 pyramidal cells in organotypic slice cultures are highly packed, making this preparation ideal for

investigating whether DPE can spread between two neighboring CA3 pyramidal cells.

(F) Two neighboring CA3 pyramidal cells were simultaneously patched, and only one received the depolarizing step.

(G and H) Sample traces and time course illustrating that DPE is confined to the depolarized neuron (n = 11). Values are presented as mean ± SEM of

n experiments.
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and anandamide (Chevaleyre et al., 2006). DPE was not affected

when perturbing the synthesis of 2-AG with the inhibitor of the

diacylglycerol lipase, tetrahydrolipstatine (5 mM, n = 9, p =

0.841) (Figures 4A, S4A, and S4F; Table S1) nor when perturbing

the degradation of anandamide with the inhibitor of fatty acid

amide hydrolase, 30-(aminocarbonyl)[1,1’-biphenyl]-3-yl)-cyclo-

hexylcarbamate (1 mM, n = 15, p = 0.146) (Figures 4A, S4B,

and S4F; Table S1). Furthermore, blocking degradation of

2-AG with a selective inhibitor of monoacylglycerol lipase, JZL

184 (10 mM), did not affect DPE (n = 16, p = 0.417) (Figures 4A,

S4C, and S4F; Table S1). These experiments argue against

a role for 2-AG or anandamide as retrograde messengers for

DPE. In contrast, we found that cytoplasmic phospholipase A2

(cPLA2), a key enzyme responsible for the Ca2+-dependent

release of AA from phospholipids (Lambeau and Gelb, 2008) is

critically involved in DPE. Indeed, inhibition of cPLA2 with arach-

idonyl trifluoromethyl ketone (AACOCF3; 10 to 20 mM) fully pre-

vented DPE (ctr: 197% ± 17%, n = 13; AACOCF3: 110% ±

7%, n = 20, p = 0.0001) (Figures 4A–4C). PLA2 inhibition also

prevented the enhancement of Mf-EPSCs induced by AP

discharge evoked in CA3 pyramidal cells either with the natural

firing protocol (ctr: 131% ± 10%, n = 9; AACOCF3: 90% ± 6%,

n = 7, p = 0.0079) or through burst stimulation of Mf-CA3 synap-
790 Neuron 81, 787–799, February 19, 2014 ª2014 Elsevier Inc.
ses (ctr: 136% ± 9%, n = 13; AACOCF3: 105% ± 8%, n = 12, p =

0.028) (Figure S1L). AA can be further metabolized by cyclo-

oxygenases (COX), for example to prostaglandins, or by lipoxy-

genases (LOX), to produce downstream products such as

hydroxyperoxyeicosatetetraenoic acids (HPETEs) or hydroxyei-

cosatetraenoic acids (HETEs) (Figure 4A). The COX2 inhibitor

N-(2-cyclohexyloxy-4-nitrophenyl) methanesulfonamide had no

effect on DPE ruling out the participation of its downstream

products (data not shown). In contrast, blocking LOX with PD

146176 (10 mM, 12- and 15-LOX inhibitor), baicalein (10 mM,

5- and 12-LOX inhibitor), or nordihydroguaiaretic acid (NDGA;

50 mM), a general LOX inhibitor, significantly reduced DPE

(ctr: 191% ± 10%, n = 23; PD 146176: 137% ± 15%, n = 17,

p = 0.0014; baicalein: 152% ± 9%, n = 13, p = 0.0297; NDGA:

114% ± 13%, n = 7, p = 0.0059) (Figures 4A, 4D, and

S4D–S4F), suggesting the participation of downstream product

of AA catabolism by LOX.

To test whether AA can itself increase synaptic transmission,

we synthesized caged AA (see the Experimental Procedures).

Focal photoactivation of 7-(diethylamino)-coumarin-4-yl-methyl

arachidonate (caged AA, 10 mM; a concentration which is well

within a physiologically relevant range) (Meves, 2008) onto CA3

pyramidal cell proximal dendrites induced transient potentiation



Figure 4. DPE Is Mediated by a Metabolite

of cPLA2 and Can Be Mimicked by Exoge-

nous Arachidonic Acid

(A) Signaling cascade for the metabolism of

membrane phospholipids with the respective

enzymes (red) and corresponding blockers

used (green). AEA, anandamide; COX, cyclo-

oxygenase; CYP, cytochrome P450; DAGL, DAG

lipase; FAAH, fatty acid amide hydrolase; HETE,

hydroxyeicosatetraenoic acid; HPETE, hydro-

peroxyeicosatetraenoic acid; LOX, lipoxygenase;

MAGL, MAG lipase; NDGA, nordihydroguaiaretic

acid; PG, prostaglandin; cPLA2, cytoplasmic

phospholipase A2; PLC, phospholipase C.

(B) Sample traces illustrating the abrogation of

DPE by incubating the slice (>30 min) with the

PLA2 inhibitor AACOCF3 (10–20 mM).

(C) Summary time course for experiments illus-

trated in (B) (ctr, n = 13; AACOCF3, n = 20).

(D) DPE was reduced by slice incubation with

the LOX inhibitor PD-146176 (10 mM; ctr, n = 23;

PD-146176, n = 17).

(E) Caged AA (10 mM) was perfused in the slice for

10–15 min before flashing a UV light in the stratum

lucidum near the recorded CA3 pyramidal cell.

(F) Sample traces illustrating the transient poten-

tiation of Mf-EPSCs induced by AA uncaging.

(G) Summary graph for experiments illustrated in

(F) (n = 7). Values are presented as mean ± SEM of

n experiments.
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of Mf-EPSCs (145% ± 9%, n = 7, p = 0.0156), confirming that AA

can indeed increase transmitter release at Mf-CA3 synapses

(Figures 4E–4G).

DPE Occurs via 4-AP-Sensitive Potassium Channels
Next, we sought to identify a putative presynaptic target for

AA (or a LOX product of AA). DPE was not affected by pharma-

cological inhibition of CB1 or CB2 receptors by SR141716A

and AM 630, respectively (Figures S4G, S4H, and S4K;

Table S1), consistent with the finding that DPE does not

rely on the production of endocannabinoids. In addition, antag-

onists against known CNS lipid receptors such as TRPV1
Neuron 81, 787–799,
(capsazepine) (Gibson et al., 2008) or

GPR55 (cannabidiol) (Ryberg et al.,

2007) did not affect DPE (Figures S4I–

S4K; Table S1). Protein kinase C (PKC)

is another possible target of AA. It

has been reported that AA and some

of its derivatives can indirectly facili-

tate PKC activation (Schaechter and

Benowitz, 1993). Similar to protein ki-

nase A (PKA), PKC activation facilitates

synaptic transmission at Mf-CA3 synap-

ses. However, PKC or PKA activity was

not required for DPE (Figures S4L–S4U;

Table S1).

AA and some of its derivatives are

also known to directly modulate voltage-

gated ion channels (Fink et al., 1998).
Interestingly, AA induces C-type inactivation of voltage-gated

potassium channels (Kv) (Oliver et al., 2004). Cumulative inacti-

vation or pharmacological blockade of presynaptic Kv channels

induce a broadening of the AP waveform at Mf bouton (MfB) that

results in increased glutamate release (Geiger and Jonas, 2000).

To test whether presynaptic Kv channels could be the targets of

AA released during DPE, we examined whether blocking Kv

channels with low concentrations of 4-aminopyridine (4-AP; 5

or 10 mM) occluded DPE. At these concentrations, 4-AP consid-

erably increased basal synaptic transmission at Mf-CA3 synap-

ses (n = 7 and n = 6 for 4-AP 5 and 10 mM, respectively) (Figures

5A and 5B). Preincubation of the slices with 4-AP significantly
February 19, 2014 ª2014 Elsevier Inc. 791



Figure 5. DPE Occurs via 4-AP-Sensitive Potassium Channels

(A and B) Sample traces and time course illustrating the potentiating effect of 5 and 10 mM 4-AP on Mf-EPSCs (average at 25–30 min; 5 mM 4-AP, 207% ± 70%,

n = 7; 10 mM 4-AP, 333% ± 34%, n = 6).

(C) Sample traces illustrating occlusion of DPE by preincubation of slices with 4-AP (10 mM).

(D) Summary of the experiments showing occlusion of DPE by 4-AP (ctr, n = 11; 4-AP 5 mM, n = 13; 4-AP 10 mM, n = 9).

(E and F) Potentiation of Mf-EPSCs by forskolin (10 mM; 344% ± 28%, n = 12).

(G and H) Sample traces and summary graph showing that DPE amplitude is not affected when Mf-EPSCs are previously potentiated by forskolin (10–20 mM; ctr,

n = 6; forskolin, n = 12). DPEwas induced 20–30min after forskolin application when potentiation of Mf-CA3 synaptic transmission had reached a plateau. Values

are presented as mean ± SEM of n experiments.
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reduced DPE (ctr: 211% ± 15%, n = 11; 5 mM 4-AP: 145% ±

12%, n = 13, p = 0.0023; 10 mM 4-AP: 114% ± 7%, n = 9, p =

0.0005) (Figures 5C and 5D). The reduction in DPE magnitude

did not simply result from a ceiling effect, given that forskolin

(10 mM), a known potentiator of Mf-CA3 synapses via the activa-

tion of the PKA pathway, increased basal synaptic transmission

(n = 12) (Figure 5E and 5F) but did not occlude DPE (ctr: 193% ±

18%, n = 6; forskolin: 193% ± 21%, n = 12, p = 0.4790) (Figures

5G and 5H). Similarly, DPE was not occluded by previously

induced presynaptic LTP (Figure S5).

AA Induces the Broadening of Mf-Presynaptic Action
Potentials
Thus, we reasoned that AA released from CA3 pyramidal cells

during DPE may result in the broadening of MfB APs by the inac-

tivation of 4-AP-sensitive presynaptic Kv channels. To test this

hypothesis, we performed patch-clamp recordings from MfBs

in organotypic cultures from Thy1-GFP mice (DPE was similarly

observed in this preparation) (Figures 3F–3H), which significantly

improved identification of MfBs (Figure 6A, S6A, and S6B)

(Galimberti et al., 2006). APs triggered by current injection and

recorded from MfBs in the current clamp mode displayed previ-

ously described property; i.e., marked frequency dependent

broadening due to Kv channel inactivation (Figure 6B) (Geiger

and Jonas, 2000). Moreover, in agreement with a previous study

(Alle et al., 2011), low concentrations of 4-AP (10 mM), which

considerably increased glutamate release at Mf synapses, also

broadened APs (normalized AP half-width, 4-AP: 182% ± 15%,

n = 5, p = 0.0313) (Figures 6C and 6D). We found that focal AA

uncaging induced a rapid broadening of the presynaptic AP

(normalized AP half-width values, at min 2–3: AA, 122% ± 6%,
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n = 6; absolute AP half-width values: AA, baseline 0.55 ±

0.09 ms; after UV, at min 2–3: = 0.69 ± 0.09 ms; n = 6. p =

0.0313) (Figures 6E and 6F), which lasted several minutes. As a

control, a similar UV flash given in the absence of the caged com-

pound did not change AP half-width (normalized AP half-width

values, at min 2–3: ctr, 99% ± 4%, n = 6; absolute AP half-width

values: ctr, baseline = 0.54 ± 0.03 ms; after UV, at min 2–3: =

0.53± 0.03ms, n = 6). Similar resultswere obtained in acute slices

from P28-35 Thy1-GFP mice (Figures S6C and S6D). Thus, our

functional and pharmacological data strongly suggest that AA

may induceabroadeningofAPsvia the inactivationofKvchannels

in theMfB,which then results in an increased releaseofglutamate.

AA Inhibits Presynaptic Kv Currents
To further confirm that AA indeed modulates presynaptic Kv

channels, we tested the effect of AA uncaging on isolated pre-

synaptic Kv currents from MfBs. It has previously been shown

that AA significantly reduces Kv currents in oriens-alveus inter-

neurons (OA-I) in the CA1 region (Oliver et al., 2004). First, to vali-

date our assay, we tested AA uncaging on Kv currents recorded

from OA-I interneurons in the CA1 area in the cell-attached

configuration (Figures S6E–S6G). We found that pharmacologi-

cally isolated Kv currents recorded from the soma of OA-I inter-

neurons were potently inhibited by AA uncaging (normalized

amplitude, p = 0.0469; normalized area, p = 0.0156) (Figures

S6F and S6G). Next, we tested the effect of AA uncaging on

pharmacologically isolated Kv currents recorded from MfBs in

the cell-attached configuration (Figure 6G). Kv currents recorded

fromMfBswere inhibited by AA uncaging (normalized amplitude,

ctr: 94% ± 4%, n = 7; AA uncaging: 56% ± 9%, n = 7, p = 0.0156;

normalized area, ctr: 97% ± 7%, n = 7; AA uncaging: 42% ± 8%,



Figure 6. AA Induces Mf-Presynaptic Action Potential Broadening by Inactivation of Presynaptic Kv Channels

(A) Hippocampal organotypic slices were prepared from Thy1-GFP mice to facilitate the visualization of MfBs.

(B) APs evoked by a 1 or 100 Hz train of brief current pulses (200 pA, 1 ms). Black, 1st AP; green, 50th AP; red, 100th AP. Traces were aligned to the onset of the

current pulse. Note that AP broadening during repetitive stimulation (1st versus 100th), which is characteristic of MfBs and is mediated by activity-dependent

inactivation of presynaptic Kv channels.

(C and D) Sample traces (average of 15–20 sweeps) illustrating that the AP half-width (HW) increases with 4-AP (10 mM; n = 5).

(E) Sample traces (average of three to five sweeps) illustrating that the AP HW increases after AA uncaging. No significant changes were observed in control

experiments (UV light applied in the absence of caged AA).

(F) Time course for AA uncaging experiments illustrated in (F) (ctr, n = 6; AA, n = 6). Values are presented as mean ± SEM of n experiments.

(G and H) Sample traces (average of five to six sweeps) illustrating the inhibitory effect of AA uncaging on the amplitude and area of the Kv currents recorded from

MfB in the cell-attached configuration. Caged AA (10 mM) was dissolved in the patch pipette solution. A 500 ms prepulse to�110 mV was applied. No change in

the currents over time was observed in control experiments (no UV light applied).

(I) Summary graph of the effect of AA uncaging as illustrated in (F) (ctr, n = 7; AA, n = 7; *p = 0.0156, Wilcoxon match pairs test).

Neuron

Lipid Modulation of Presynaptic Kv Channels
n = 7, p = 0.0156) (Figures 6E and 6F). In an attempt to further

characterize the mechanism by which AA inhibited Kv currents

at MfBs, we have performed outside-out patch-clamp record-

ings from MfBs in acute slices. We found that AA shifted the

voltage dependence of steady-state inactivation of pharmaco-

logical isolated Kv currents toward more negative values (Fig-

ures S6H and S6I) but did not affect the voltage dependence

of activation of Kv currents from the same patches. These results

show that Kv channels present atMfBs are highly sensitive to AA.

Hence, our data strongly suggest that DPE results from a Ca2+-

dependent postsynaptic release of AA (or one of its derivatives)

acting on presynaptic Kv channels in order to induce a broad-

ening of APs, which, in turn, results in an increase of glutamate

release (Figure 9). We thus report a form of short-term synaptic

plasticity in the CNS resulting from the direct modulation of

voltage-gated channels by endogenously released lipids.

Next, we aimed to directly investigate whether endogenous

AA released from postsynaptic CA3 pyramidal cells couldmodu-
late the duration of presynaptic APs in MfBs. We have previously

shown that burst stimulation of Mf-CA3 synapses induced the

firing of CA3 pyramidal cells, which is sufficient to induce DPE

(Figures S1J–S1L). Thus, we have monitored presynaptic AP

waveform with patch-clamp recordings while inducing DPE

with this protocol. We have triggered bursts of APs by direct cur-

rent injection in the MfB to induce glutamate release and drive

the connected postsynaptic CA3 pyramidal cell to spike and,

ultimately, induce DPE (Figure 7). Bursts of action APs in the

MfB lead to prolonged broadening of presynaptic APs, consis-

tent with an inactivation of presynaptic Kv channels. This broad-

ening displayed a slow onset similar to the time course of DPE

(normalized AP half-width values at min 5–6 [3–4 min after the

theta burst]: ctr, 127% ± 8%, n = 11; absolute AP half-width

values: ctr, baseline = 0.53 ± 0.03 ms; after theta burst, at min

5–6 = 0.65 ± 0.03 ms, n = 11. p = 0.0049) (Figures 7B–7D). We

performed two control experiments in order to verify that presyn-

aptic AP broadening is mediated by postsynaptic AA release in
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Figure 7. Theta Burst Firing in MfBs Induces AP Broadening, which Depends on PLA2 Activity and Activation of Glutamate Receptors in CA3

Pyramidal Cell
(A) Sample traces (average of three sweeps), illustrating that, in the control condition, the AP half-width is increased 3min after the burst of APs (delivered at 2min)

in the MfB. No change in the AP duration was observed in the presence of the PLA2 inhibitor (AACOCF3, 20 mM) or a cocktail of glutamate receptor blockers

(NBQX, AP5, mGluR1, and mGluR5).

(B) Time course for MfB burst experiments illustrated in (B) (ctr, n = 11; AACOCF3, n = 6; blockers, n = 8). Values are presented as mean ± SEM of n experiments.

(C) Bar graph summarizing the changes in AP half-width at 5–6 min, 3 min after the theta burst in the MfB.

(D) Sample trace illustrating the brief burst of APs triggered by burst injection of currents (eight APs at 25 Hz, repeated six times at theta frequency, 140 ms

interval).

(E) Sample traces illustrating that the broadening of the AP (comparing the 1st versus the 48th AP of the burst) does not differ among different experimental

conditions.

(F) Bar graph summarizing the changes APHW (1st versus the 48th) during the burst in theMfB (ctr, n = 11; AACOCF3, n = 6; blockers, n = 8). Values are presented

as mean ± SEM of n experiments (*p = 0.0156, **p = 0.002 - 0.0049, Wilcoxon match pairs test).
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these conditions. First, we showed that AP broadening was

inhibited by the PLA2 inhibitor AAFCOF3 (normalized AP half-

width values at min 5–6 [3–4 min after the theta burst]:

AACOCF3, 107% ± 2%, n = 6; absolute AP half-width values:

AACOCF3, baseline = 0.47 ± 0.04 ms; after theta burst, at min

5 to 6 = 0.49 ± 0.04 ms, n = 6) (Figures 7B–7D). Second, we

showed that the broadening of presynaptic APs requires synap-

tic activation of glutamate receptors which drive postsynaptic

firing. In the presence of a cocktail of ionotropic and metabo-

tropic glutamate receptor antagonists, no broadening of presyn-

aptic APs was observed after burst stimulation (normalized AP

half-width values at min 5 to 6 [3 to 4 min after the theta burst]:

blockers, 109% ± 7%, n = 8; absolute AP half-width values:

blockers, baseline = 0.60 ± 0.03 ms; after theta burst, at min 5

to 6 = 0.61 ± 0.03 ms, n = 8) (Figures 7B–7D). In the absence

of burst stimulation, the duration of presynaptic APs over time

did not differ between control conditions and during pharmaco-

logical treatments (data not shown). These results provide clear

evidence that burst stimulation of presynaptic Mf terminals re-

sults in prolonged presynaptic AP broadening mediated by lipid
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messengers produced via increase in postsynaptic PLA2 activ-

ity. Importantly, the pharmacological treatments did not affect

the capability of MfBs to undergo short-term use-dependent

broadening during a theta burst stimulation per se (normalized

AP half-width values 48th versus 1st: ctr, 122% ± 3%, n = 8;

AACOCF3, 123% ± 3%, n = 6; blockers, 123% ± 3%, n = 8;

absolute AP half-width values: ctr, 1st = 0.59 ± 0.03 ms; 48th =

0.72 ± 0.04 ms, n = 11, p = 0.002; AACOCF3, 1st = 0.46 ±

0.04 ms; 48th = 0.56 ± 0.05 ms, n = 6, p = 0.0156; blockers,

1st = 0.64 ± 0.03 ms; 48th = 0.79 ± 0.05 ms, n = 8, p = 0.0156)

(Figures 7E–7G) (Geiger and Jonas, 2000).

DPE Facilitates LTP Induction at Mf-CA3 Synapses
Although there is a strong agreement that Mf-LTP is expressed

presynaptically at Mf-CA3 synapses, the participation of the

postsynaptic neuron in its induction has been a matter of debate

(Mellor and Nicoll, 2001; Nicoll and Schmitz, 2005; Yeckel et al.,

1999). Thus, we askedwhether DPE couldmodulate presynaptic

Mf-LTP; i.e., whether the transient increase of synaptic trans-

mission induced by DPE could facilitate LTP induction. A single



Figure 8. DPE Lowers the Threshold for Long-Term Potentiation of Mf-EPSCs

(A) Sample traces showing that both DPE and a single HFS train (100 stimuli at 100 Hz) fail to induce long-term potentiation of Mf-EPSCs (Mf-LTP). DPE followed

2 min later by a single HFS train induces Mf-LTP.

(B–D) Summary of the data presented in (A) (100 Hz, n = 6; DPE, n = 9; DPE + 1 HFS, n = 9).

(E) Sample traces illustrating thatMf-LTP observed in (D) is abrogated with AACOCF3 (10 mM). The bottom panel shows that, conversely, presynaptic Mf-LTP can

be induced by three HFS even in the presence of nifedipine, indicating that postsynaptic L-type calcium channels are not absolutely required for Mf-LTP.

(F and G) Summary of the experiments presented in (E) (DPE + 1 HFS in the presence of AACOCF3, n = 7; three HFS, n = 5).

(H) Bar graph summarizing the results presented in (B), (C), (D), (F), and (G). Values are presented as mean ± SEM of n experiments (*p = 0.0139, Kruskal-

Wallis test).
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high-frequency stimulation (HFS) train (100 stimuli at 100 Hz) or

the 9 s DPE protocol did not induce any long-lasting potentiation

of Mf-EPSCs (35–40 min after the protocol; HFS: 86% ± 9%, n =

6; DPE: 94% ± 11%, n = 9) (Figures 8A–8C and 8H). However,

when this single HFS train was applied 2 min after the induction

of DPE (at the time in which potentiation is maximal), a long-

lasting potentiation of Mf-EPSCs was observed (DPE + 1 HFS:

172% ± 16%, n = 9, p = 0.0139) (Figures 8A, 8D, and 8H). Block-

ing DPE induction with nifedipine (10 mM) or AACOCF3 (10 to

20 mM) abolished LTP induced by a single train and the 9 s

DPE protocol (DPE + 1 HFS: nifedipine, 84% ± 13%, n = 7;

AACOCF3, 119% ± 14%, n = 8) (Figures 8E, 8F, and 8H),

whereas the conventional presynaptic LTP induced by three

HFS trains was not blocked by nifedipine (10 mM; 3 HFS:

215%± 60%, n = 5) (Figures 8E, 8G, and 8H). Our results confirm

numerous studies that have indicated that there is no strict

requirement for a rise of Ca2+ or depolarization of the postsyn-

aptic CA3 pyramidal cell for inducing presynaptic Mf-LTP (Mellor

and Nicoll, 2001). However, we show that a postsynaptic rise of

Ca2+ in postsynaptic CA3 pyramidal cells, by triggering DPE, fa-

cilitates the induction of LTP. Thus, our data shed light on the dis-

crepancies in the literature on the participation of CA3 pyramidal

cells in Mf-LTP (Yeckel et al., 1999). The most likely explanation
for a change in threshold for presynaptic LTP with DPE lies in the

increased activation of voltage-dependent Ca2+ channels

(Breustedt et al., 2003; Dietrich et al., 2003) during the tetanus,

resulting in higher Ca2+ influx and facilitation of the activation

of Ca2+-dependent adenylyl cyclases AC1 and AC8 (Figure 9)

(Villacres et al., 1998; Wang et al., 2003).

DISCUSSION

Membrane-derived lipids are important signaling molecules

used by neurons to modulate synaptic transmission. In the

CNS, neuronal depolarization is known to increase the produc-

tion of lipid messengers, which either act on the neuron where

they are produced or diffuse away and modulate presynaptic

inputs (Regehr et al., 2009; Wilson and Nicoll, 2002). Almost all

presynaptically acting lipid messengers reported so far induce

a decrease in neurotransmitter release, mainly by activating

CB1 or TRPV1 receptors (Regehr et al., 2009). Apart from their

action through specific receptors, lipids are also known to

directly act on voltage-gated ion channels in order to modulate

their function (Boland and Drzewiecki, 2008). However, an

endogenous mechanism employing such a direct modulation

of voltage-gated ion channels by membrane-derived lipids has
Neuron 81, 787–799, February 19, 2014 ª2014 Elsevier Inc. 795



Figure 9. Working Model for the Mechanism of DPE

Depolarization of a CA3 pyramidal cell triggers voltage-dependent Ca2+

channels activation. Elevation of intracellular Ca2+ concentration activates

cPLA2, leading to the release of AA. AA inhibits presynaptic 4-AP-sensitive Kv

channels, inducing a broadening of the AP in the presynaptic Mf bouton, and

subsequent increased release of glutamate. This retrograde signaling mech-

anism decreases the threshold for triggering presynaptic LTP of Mf-CA3

synapses.
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not yet been reported. Recently, it was shown that 2-AG directly

modulates GABAA receptors, and thismodulation has a potential

impact on mouse behavior (Sigel et al., 2011), supporting the

idea that membrane-derived lipids can, in principle, modulate

neuronal signaling not only through membrane receptors but

also through direct modulation of ion channels.

Here, we identify a retrograde signaling mechanism by which

endogenously released membrane-derived lipids potentiate

synaptic transmission through the inhibition of presynaptic Kv

channels. Exogenously applied AA appears to regulate synaptic

transmission by a variety of mechanisms (Darios et al., 2007;

Meves, 2008; Piomelli et al., 1987;Williams et al., 1989), although

a role for AA at vertebrate CNS synapses has been challenged

(O’Dell et al., 1991). The present study demonstrates that AA

(or one of its metabolites) is released in an activity-dependent

manner at Mf-CA3 synapses and acts as a retrograde

messenger in order to facilitate synaptic transmission.Moreover,

we show that 4-AP-sensitive Kv channels represent a target for

presynaptic modulation of neurotransmitter release by a lipid-

mediated retrograde mechanism.

Mechanisms and Properties of DPE
Here, we propose that DPE results from the Ca2+-dependent

release of AA from postsynaptic CA3 pyramidal cells, which

then acts as a retrograde messenger in order to broaden presyn-

aptic APs, subsequently potentiating synaptic transmission.

Methodologically, lipid uncaging offers the possibility for acute

and local manipulation of lipid second messenger concentration

(Nadler et al., 2013). This approach allows rapid changes in the

concentration of a lipid in a focal neuronal domain in a slice

preparation, which is difficult to achieve with bath application

of AA. Focal uncaging of AA induced a transient potentiation of

Mf-CA3 synapses, a broadening of the presynaptic AP, and an

inactivation of Kv channels recorded in patches from MfBs.

The AA-induced broadening of the AP was fast in onset and

lasted for several minutes, with a time course comparable to

the effect of uncaged AA on Mf-EPSCs. The slow decay of AA

broadening may be partly due to the off kinetics of AA from Kv
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channels and/or to the slow washout of AA. It has been reported

that the effects of AA on Kv channels in heterologous expression

systems and in the slice preparation could only be reverted after

the addition of BSA (Villarroel and Schwarz, 1996). Moreover, as

to the duration of DPE itself, the enzymatic machinery involved

in the release of AA may, in addition, display slow kinetics. Inter-

estingly, other well-characterized forms of lipid-mediated short

term plasticity, namely DSI and DSE, display faster decay

kinetics on the order of tens of seconds (Regehr et al., 2009).

Whether these differences are due to the enzymatic processes

(synthesis and clearance), the nature of the retrograde

messenger, or the presynaptic effector is unknown. We show

that presynaptic Kv channels sensitive to low concentrations of

4-AP are the likely targets of AA in DPE. Kv channels are known

to be highly sensitive to several lipids, especially AA (Meves,

2008). We propose that AA uncaging induces inactivation of Kv

channels recorded in patches from MfBs by shifting the voltage

dependence of steady-state inactivation toward more negative

values. This is well in line with observations of the effects of AA

on somatic Kv channels recorded from CA1 pyramidal cells

(Angelova and Müller, 2006; 2009).

In control conditions, presynaptic APs at Mf-CA3 synapses

are short during low-frequency stimulation but are prolonged

up to 3-fold during HFS (100 Hz) as a consequence of cumulative

Kv channel inactivation (Geiger and Jonas, 2000). High-fre-

quency-mediated AP broadening only requires discharge of pre-

synaptic APs (Geiger and Jonas, 2000) but not the activation of

PLA2. In contrast, DPE depends on the depolarization or spiking

activity of the postsynaptic neuron but not on the presynaptic

AP discharge. In addition, frequency-dependent broadening of

presynaptic APs lasts only seconds (Geiger and Jonas, 2000)

as opposed to several minutes for DPE. Hence, DPE and the

short-lived broadening of APs by HFS represent two different

modes of regulation of presynaptic APs with distinct mecha-

nisms and kinetics that may coexist at the same synapse. It

may be possible that, at a high frequency of presynaptic APs,

AA-mediated inhibition will be less effective given that Kv chan-

nels are already inactivated because of their intrinsic gating

properties. In all DPE experiments, presynaptic stimulation was

kept at 0.1 Hz, where there is no activity-dependent inactivation

of presynaptic Kv channels.

AA induces the broadening of presynaptic APs by about 25%.

Several previous studies point out that the relationship between

presynaptic AP width and synaptic strength is not linear. For

instance, at parallel fiber Purkinje cell synapses, a 23% increase

in spike width lead to a 25% increase in total calcium and to

a doubling of synaptic strength (Sabatini and Regehr, 1997).

At Mf-CA3 synapses, a prolongation of the presynaptic AP

by 33%, increased the Ca2+ charge by 27%, which, in turn,

increased the EPSC peak amplitude by 77% (Geiger and Jonas,

2000). Hence, we hypothesize that the AA-induced broadening

of the AP leads to enhanced synaptic transmission by

increasing the AP-driven Ca2+ influx in presynaptic terminals.

The changes in Pr after Mf-LTP most likely involve changes in

the release machinery (Nicoll and Schmitz, 2005). However,

Mf-LTP is not thought to be expressed as a change in AP-driven

Ca2+ influx (Kamiya et al., 2002). Accordingly, potentiation

induced by Mf-LTP did not occlude DPE. Therefore, the
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potentiation induced by Mf-LTP and DPE are most likely parallel

mechanisms.

Is DPE a Widespread Mechanism?
cPLA2 is expressed in most regions of the brain and predomi-

nantly in neurons (Kishimoto et al., 1999), suggesting that DPE

and modulation of transmitter release following Ca2+-dependent

cPLA2 activation may be a general phenomenon observed at

other central synapses. We observed a robust potentiation of

synaptic transmission through DPE at Mf-CA3 synapses but

not at A/C-CA3 glutamatergic synapses. At least three reasons

may explain this difference. First, the extent of DPE and the con-

ditions of induction possibly vary depending on the sensitivity or

type of presynaptic Kv channels or other ion channels, the local

density of voltage-gated Ca2+ channels, or other sources of

Ca2+, such as the activity of mGluRs. Second, the particular

architecture of Mf synapses, with a large presynaptic terminal

enwrapping the complex and large postsynaptic thorny excres-

cences may also favor production and accumulation of mem-

brane-derived lipid messengers. Third, Mf-CA3 synapses lack

presynaptic CB1Rs, which mediate short-term inhibition of

glutamate release at other synapses. An interesting hypothesis

would be that, at certain synapses, the inhibition of synaptic

transmission through activity-dependent release of endo-

cannabinoids and activation of CB1Rs counterbalances the

potentiation induced by AA-mediated inhibition of presynaptic

Kv channels. The balance between CB1-dependent inhibition

and DPE could be fine-tuned by CB1Rs expression levels at

presynaptic sites.

We have directly tested this hypothesis at Sc-CA1 synapses

which express DSE (Depolarization-induced Suppression of

Excitation), a short-lasting inhibition of Sc-CA1 synaptic trans-

mission dependent on endocannabinoid signaling and activation

of CB1Rs (Ohno-Shosaku et al., 2002). We showed that a

DPE-like phenomenon can be observed at Sc-CA1 synapses

in conditions where endocannabinoid signaling was abrogated

by blocking presynaptic CB1Rs (Figure S7). This transient

potentiation of Sc-CA1 synaptic transmission was blocked by

AACOCF3, the cPLA2 antagonist. In fact, it was previously

shown that inhibiting CB1Rs in dorsal raphe neurons not only

blocked DSE but unexpectedly elicited a transient potentiation

of EPSC amplitude similar in magnitude and timing to DPE

(Haj-Dahmane and Shen, 2009). An additional example is given

by the analysis of mice deficient for diacylglycerol lipase (DGL-

a) which produces 2-arachidonoylglycerol (2-AG) involved in

DSE at central synapses (Tanimura et al., 2010). Interestingly,

in these mice, the abolition of DSE at parallel fiber to Purkinje

cell synapses unravelled a transient potentiation of synaptic

transmission with kinetic and amplitude similar to what we are

now reporting at Sc-CA1 synapses (Tanimura et al., 2010).

Hence, we can conclude that DPE could be more widespread

in the brain, and in particular be prevalent at synapses which

do not express CB1Rs.

Physiological Relevance of DPE
DPE is not only induced by a steady-state depolarization of the

postsynaptic neuron but also by protocols that pertain to physi-

ological hippocampal activity. Indeed, DPE can be triggered by a
sequence of a few short bursts of postsynaptic APs repeated at

the frequency of theta oscillations, which are thought to facilitate

the formation of maps and episodic/semantic memories (Buz-

sáki, 2005). Moreover, this transient potentiation is observed

with a natural sequence of AP firing reproducing the spiking ac-

tivity of a CA3 place cell of a rat exploring its environment (Isaac

et al., 2009). Hence, DPE, which is expressed as a change in pre-

synaptic properties, can be induced by the sole spiking activity

of postsynaptic CA3 pyramidal cells but does not directly require

synaptic activity. Nonetheless, bursts of spikes triggered by syn-

aptic inputs (i.e., Mf-CA3 inputs) are also efficient in triggering

DPE. However, in this case, DPE coexists with purely presynap-

tic forms of short-term facilitation that display in generally shorter

time courses (Nicoll and Schmitz, 2005). Although DPE induction

does not depend on presynaptic AP firing, we do not exclude

that it could be modulated by incoming synaptic activity leading,

for instance, to the activation of postsynaptic mGluRs and Ca2+

release from internal stores.

As a direct consequence of the fact that DPE can be induced

by postsynaptic spiking activity, it will affect all Mf-CA3 synapses

in a single CA3 pyramidal cell as opposed to other forms of short-

term plasticity that are synapse specific. Concomitant to the fact

that DPE does not spread to neighboring CA3 pyramidal cells,

this process favors the emergence of an active CA3 pyramidal

within the local network. By transiently facilitating synaptic trans-

mission, DPE primes presynaptic long-term plasticity at all Mf

synaptic inputs to a single CA3 pyramidal cell. This will most

likely occur after a period of high spiking activity, such as when

an animal explores its environment (Buzsáki, 2005). The priming

event represented by DPE most likely enhances the capacity of

local CA3 circuits to rapidly encode a novel context by facilitating

long-term synaptic plasticity between dentate gyrus and CA3

pyramidal cells. Hence, the control of voltage-gated ion chan-

nels by activity-dependent release of membrane-derived lipids

provides a mechanism for the dynamic regulation of neural

circuits.

EXPERIMENTAL PROCEDURES

All the animal were used according to the guidelines of the University of

Bordeaux/CNRS Animal Care and Use Committee.

Electrophysiology

Parasagittal hippocampal slices (320 mm) were obtained from 18- to 25-day-

old C57Bl/6 mice. Slices were transferred to a recording chamber in which

they were continuously superfused with an oxygenated extracellular medium

(95% O2 and 5% CO2) containing 125 mM NaCl, 2.5 mM KCl, 2.3 mM

CaCl2, 1.3 mM MgCl2, 1.25 mM NaH2PO4, 26 mM NaHCO3, and 20 mM

glucose (pH 7.4). Whole-cell recordings were made at �32�C from CA3

pyramidal cells under infrared differential interference contrast imaging with

borosilicate glass capillaries, which had resistances between 4–8 MU. For

voltage-clamp recordings from CA3 pyramidal cells, the patch electrodes

were filled with a solution containing 140 mM CsCH3SO3, 2 mM MgCl2,

4 mM NaCl, 5 mM phospho-creatine, 2 mM Na2ATP, 0.2 mM EGTA, 10 mM

HEPES, and 0.33 mM GTP (pH 7.3) adjusted with CsOH. DPE was still

observedwhen CsCH3SO3was replaced by CsCl or KCl or by the larger cation

(NMDG+). DPE was not induced when QX314 (5 mM) was added to the intra-

cellular solution (data not shown): QX314, largely used as Na+ channel blocker,

also blocks voltage-gated calcium channels (VGCC) and interferes with intra-

cellular signaling (Talbot and Sayer, 1996). For current clamp recordings of

CA3 pyramidal cells, the intracellular solution contained 140 mM KCH3SO3,
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10 mM HEPES, 0.2 mM EGTA, 4 mM MgATP, 0.3 mM GTP, and 15 mM

phosphocreatine (pH adjusted to 7.3 with KOH). No liquid-junction potential

correction was used. Bicuculline (10 mM) was present in the superfusate of

all experiments. A patch pipette (open tip resistance �5 MU [about 1 mm tip

diameter]) was placed in the dentate gyrus to stimulate Mfs or in the stratum

radiatum of the CA3 area to stimulate A/C fibers. Mf synaptic currents were

identified according to the following criteria: robust low-frequency facilitation,

low release probability at 0.1 Hz, rapid rise times of individual EPSCs (�1 ms),

and EPSC decays free of secondary peaks that may indicate the presence of

polysynaptic contamination. Details for the electrophysiological procedures,

including patch-clamp recordings of presynaptic boutons, are provided in

the Supplemental Information.

Caged AA Synthesis and Uncaging

Caged AA was synthesized by esterification of AA with diethylamino-4-meth-

ylenhydroxycoumarin in the presence of carbodiimide and dimethylamino

pyridine in 59% yield after purification by liquid chromatography (for synthetic

details, see below). The hydroxycoumarin was prepared according to pub-

lished procedures (Hagen et al., 2003; Meves, 2008).

A fresh aliquot of caged AA was used for each experiment and was

dissolved in extracellular medium. The slices were perfused with extracellular

medium containing caged AA for at least 10–15 min before starting the exper-

iments in order to ensure homogenous penetration of the caged compound in

the slice. During the application of caged AA, a total amount of 10 ml of extra-

cellular solution containing the caged compound was continuously recircu-

lated and oxygenated. AA was locally uncaged in the stratum lucidum of the

patched CA3 pyramidal cell or the patched MfB by an UV flash photolysis

(Xenon flash lamp, Rapp OptoElectronic). For cell-attached recordings,

10 mMcaged AAwas dissolved directly in the patch-pipette solution. Synthetic

details are provided in the Supplemental Information.

Statistics

Values are presented asmean ± SEM of n experiments. For statistical analysis,

nonparametric test were used. A Mann-Whitney test was used for two groups’

comparison, and Kruskal-Wallis test followed by aDunn’smultiple comparison

test for comparison between more than two groups. Within-cell comparisons

were made with Wilcoxon match pairs test in raw nonnormalized values

between baseline values and after values obtained after applying the desired

protocol. Statistical differenceswere considered as significant at p < 0.05. Sta-

tistical analysis was performed with GraphPad Prism software.

All drugs were obtained from Tocris Cookson, Sigma-Aldrich, or Ascent Sci-

entific. BotoxC1 was produced as in Vaidyanathan et al. (1999). The effects of

pharmacological manipulations were always compared to interleaved control

experiments.
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