Introduction
Sensitivity and conditioning
Computer arithmetic

Bi7740: Scientific computing

Introductory considerations

Vlad Popovici
popovici@iba.muni.cz

Institute of Biostatistics and Analyses
Masaryk University, Brno

Viad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning
Computer arithmetic

There is nothing more practical than a good theory.
Kurt Lewin (1890-1947)

J

Viad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning
Computer arithmetic

Outline

@ Introduction
e Sensitivity and conditioning

e Computer arithmetic

Vlad

Bi7740: Scientific computing

Introduction
Sensitivity and conditioning
Computer arithmetic

Bibliography:

@ HEATH M.T. (2002). Scientific Computing. An introductory
survey. McGraw-Hill, 2nd edition. ISBN: 0-07-239910-4 Good
accompanying materials at
http://www.cs.illinois.edu/~heath/scicomp/,
including slides and demos! Used as basis for the first part of
the course.

o KEPNER J. (2009). Parallel Matlab for Multicore and
Multinode Computers. SIAM Publishing. ISBN:
978-0-898716-73-3

@ GENTLE J.E. (2005). Elements of Computational Statistics.
Springer. ISBN:978-0387954899

o HREBICEK, J. et al. Védecké vypoéty v matematické biologii
(Scientific computing in mathematical biology). Brno:
Akademické nakladatelstvi CERM, 2012. 117 pp. Neuveden.
ISBN 978-80-7204-781-9. IBA

Viad Bi7740: Scientific computing

http://www.cs.illinois.edu/~heath/scicomp/

Computing environments for the course:
@ MAaTLAB, http://www.mathworks.com - commercial
@ GNU OcrTave, https://www.gnu.org/software/octave/ -
"quite similar to MarLas"
@ R, http://www.r-project.org - "environment for statistical
computing and graphics"
WARNING: Some pieces of code shown during the course may
not represent the optimal implementation in the given language.
They are merely a device for demonstrating some principles.

Viad Bi7740: Scientific computing

http://www.mathworks.com
https://www.gnu.org/software/octave/
http://www.r-project.org

Introduction
Sensitivity and conditioning
Computer arithmetic

Scientific computing

Wikipedia:

"Computational science (also scientific computing or scientific
computation) is concerned with constructing mathematical models
and quantitative analysis techniques and using computers to
analyze and solve scientific problems."

Viad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning
Computer arithmetic

Scientific computing

Wikipedia:

"Computational science (also scientific computing or scientific
computation) is concerned with constructing mathematical models
and quantitative analysis techniques and using computers to
analyze and solve scientific problems."

Basically: find numerical solutions to mathematically-formulated
problems.

Viad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning
Computer arithmetic

(J. Hadamard) A problem is well posed if its solution
@ exists
@ is unique

@ has a behavior that changes continuously with the initial
conditions;

otheriwse, it is ill posed.
Inverse problems are often ill posed.
Example: 3D to 2D projection.

Viad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning
Computer arithmetic

@ continuous domain — discrete domain

@ well-posed but ill-conditioned problems: small errors in input
lead to large variations in the solution

@ improve conditioning by regularization

Viad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning
Computer arithmetic

General computational approach

continuous domain — discrete domain
infinite — finite

°

°

o differential — algebraic

@ nonlinear — (combination of) linear
o

accept approximate solutions, but control for the error

Viad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning
Computer arithmetic

Approximations

(+]

Modeling approximations:

o "model" = approximation of the nature

o data - inexact measurements or previous results
Implementation/computational approximations:

o discretization of the continuous domain; truncation
e rounding

©

(

errors in input data

(~]

errors propagated by the algorithm

(]

accuracy of the final result

Viad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning
Computer arithmetic

Example: area of the Earth

@ model: sphere

0 A=4nr
o r="°
o 7 =3.14159...

@ rounded arithmetic

Viad Bi7740: Scientific computing

Errors

Introduction
Sensitivity and conditioning
Computer arithmetic

@ Absolute error: approximate value - true value

@ Relative error:

absolute error
true value

@ — approximate value = (1 + relative error) x (true value)

o if the relative error is ~ 1079, it means that X has about d

exact digits: there exists 7 = £(0.0...0ng+1Ng+2 ...) such
thatx =x+1

true value is usually not known — use estimates or bounds on
the error

relative error can be taken relative to the approximate value

Viad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning
Computer arithmetic

Example/exercise - Implement!

Stirling’s approximation for factorials:

n
S,,:\/27rn(£) ~ nl, n=1,2,...

where e = exp(1).
Relative error (S, — n!)/n!:

or

-0.01 -

0.02 -

003 -

-0.04 -

+0.05 -

-0.06 -

007 -

-0.08
0

Viad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning
Computer arithmetic

Errors: data and computational

o compute f(x) forf:R - R
x € Ris the true value
f(x) true/desired result
X approximate input

f approximate result

©

© 0 o

o total error:

f(%) = 1(x) = (1(%) = 1(%)) + ((%) = £(x))

= computational error + propagated data error

@ the algorithm has no effect on propagated error

Viad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning
Computer arithmetic

Computational error

is sum of:

@ truncation error = (true result) - (result of the algorithm using
exact arithmetic)
Example: considering only the first terms of an infinite Taylor
series; stopping before convergence

@ rounding error = (result of the algorithm using exact
arithmetic) - (result of the algorithm using limited precision
arithmetic)
Example: 7 ~ 3.14 or n ~ 3.141593

Viad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning
Computer arithmetic

Finite difference approximation

f h)—f f h)—f
f'(x) = lim (x+h) = f(x) ~ (x+h) (X),for some small h > 0
h—0 h h

@ truncation error: f'(x) — w < Mh/2 where |f’(t)| < M
for t in a small neighborhood of x (HOMEWORK, 5p)

@ rounding error: 2¢/h, for € being the precision
o total error is minimized for h ~ 2e/M

Viad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning
Computer arithmetic

100 _
1071 H
1072 |
error
1073

1074+

1075 .

I I
107106107510

I I |
—410-310-210~1 10

stepsize h

Figure : Total computational error as a tradeoff between truncation and
rounding error (from Heath - Scientific computing)

Viad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning
Computer arithmetic

Error analysis

For y = f(x), for f : R — R an approximate y result is obtained.
o forward error: Ay =y -y

A

@ backward error: Ax = X — x, for f(X) =y

X — = f(x)
backward error[\ [forward error
x——=7 = f(x) = f(})

Viad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning
Computer arithmetic

Compute f(x) = e* for x = 1. Use the first 4 terms from Taylor

expansion:
n x> X3
f(x) =1 — 4+ —
(x) tx+ 5+ %

o take "true" value: f(x) = 2.716262 and compute

A

f(x) = 2.666667, then

o forward error: |Ay| = 0.051615, or a relative f. error of about
2%

@ backward error: X = Inf(x) = 0.989829 = |Ax| = 0.019171,
or a relative b. error of 2%

o these are two perspectives on assessing the accuracy

Viad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning
Computer arithmetic

Exercise

Consider the general Taylor series with limit e:

How many terms are needed for an approximation of e to three
decimal places?

Viad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning
Computer arithmetic

Backward error analysis

o idea: approximate result is the exact solution of a modified
problem

@ how far from the original problem is the modified version?

@ how much error in the input data would explain all the error in
the result?

@ an approximate solution is good if it is an exact solution for a
nearby problem

@ backward analysis is usually easier

Viad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning
Computer arithmetic

Sensitivity and conditioning

@ insensitive (well-conditioned) problem: relative changes in
input data causes similar relative change in the result

@ large changes in solution for small changes in input data
indicate a sensitive (ill-conditioned) problem;

@ condition number:

__ absolute relative change in solution |Ay/y|

ond = - — =
absolute relative change in input |AXx/X]|

o if cond >> 1 the problem is sensitive

Viad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning
Computer arithmetic

@ condition number is a scale factor for the error:
relative forward err = cond X relative backward err

@ usually, only upper bounds of the cond. number can be
estimated, cond < C, hence

relative forward err < C x relative backward err

Viad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning
Computer arithmetic

0 X=x+ Ax

o forward error: f(x + Ax) — f(x) = f'(x)Ax, for small enough
Ax

. f, A
o relative forward error: = (,38() -
X (x)
@ = cond = 00

Viad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning
Computer arithmetic

0 X=x+ Ax

o forward error: f(x + Ax) — f(x) = f'(x)Ax, for small enough
Ax

. f, A
o relative forward error: = (f)g() -
¥
@ = cond x 0

Example: tangent function is sensitive in neighborhood of 7/2
@ tan(1.57079) ~ 1.58058 x 10°; tan(1.57078) ~ 6.12490 x 10*
o for x = 1.57079, cond ~ 2.48275 x 10°

Viad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning
Computer arithmetic

Stability

@ an algorithm is stable if is relatively insensitive to
perturbations during computation

@ stability of algorithms is analogous to conditioning of problems

@ backward analysis: an algorithm is stable if the result
produced is the exact solution of a nearby problem

o stable algorithm: the effect of computational error is no worse
than the effect of small error in input data

Viad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning
Computer arithmetic

Accuracy

@ accuracy closeness of the result to the true solution of the
problem

@ depends on the conditioning of the problem AND on the
stability of the algorithm

@ stable algorithm + well-conditioned problem = accurate results

Viad Bi7740: Scientific computing

CPUs

Computer arithmetic

4th Generation Intel® Core™ Processor Die Map
22nm Haswell Tri-Gate 3-D Transistors

s |
System
- » Agent,
Display
s Engine & §
Proces.sor Memory §
Graphics Controller

including
Display, PCI
and DMI 105

Memory Controller /O

Quad core die shown above ‘ Transistor count: 1.4Billion

ed all nd pro

Die size: 177mm?
aphics
Al products, dates, and figures spedfied are UNDER EMBARGO UNTIL FURTHER NOTICE
relimingey hased on Gurent expectations, and
are subject to change without notice.

INTEL CONFIDENTIAL

Viad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning
Computer arithmetic

Arithmetic and Logic Unit 4 B
<4 »
< »
Status Fla = o
|- L Registers
& »
< »| 3
@
dl . E I
Bl Ll R Ll
&
=
Arithmetic
and o B
Boolean | ¥ i
Logic
Control
Unit

Viad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning
Computer arithmetic

Number representation

@ internally, all data are represented in binary format (each digit
can be either 0 or 1, e.g. 1011001...)

@ bit, nybble, byte
@ word — specific to architecture: 1, 2, 4, or 8 bytes

@ integers:

@ unsigned (> 0): on nbits: 0,...,2" — 1. The stored
representation (for 1 byte) is b;bgbsbsbsbobi by for a value
x=,b2"

o signed: 1 bit for sign, rest for the absolute value;
—2m=1....,0,...,2"1" — 1. The stored representation (for 1
byte) is b;bgbsbsbsbybyby for a value x = by(—27) + Z?:O bi2'.

Viad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning
Computer arithmetic

Floating-point numbers

o like in scientific notation: mantissa x radix®P°"e" e g.
2.35x 10°

o formally

x:i(bo+%+g—§+~~-+[%)x,85
where
B is the radix (or base)
p is the precision
L < E < U are the limits of the exponent
0<bxk<p
@ mantissa: m = bob; ... bp_1; fraction: bibs ... bp_1
o the sign, mantissa and exponent are stored in fixed-sized "
fields (the radix is implicit for a given system, 8 = 2 usually) fg',i

Viad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning
Computer arithmetic

Normalization:
@ bp#0forallx #0
@ mantissa m satisfies 1 <m < g8
@ ensures unique representation, optimal use of available bits

Internal representation (on 64 bits - "double precision”, binary
representation):

X = ’ Sign | exponent | fraction ‘:‘ b63 I beg . b52 I b51 . bo ‘

Viad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning
Computer arithmetic

Properties:
@ only a finite number of discrete values can be represented

o total number of floating point numbers representable in
normalized format is

28— 1P (U-L+1)+1

(Q: can you justify the result?)
@ undeflow level (smallest number): UFL = -
@ overflow level (largest number): OFL = gY+1(1 - gP)

@ not all real numbers can be represented exactly:

o machine numbers
e rounding — rounding error

Viad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning
Computer arithmetic

Example: letf=2,p=38,L = -1, U = 1, there are 25 distinct
numbers that can be represented:

@ UFL =0.519; OFL = 3.519
@ note the non-uniform coverage

@ ¥x € R, fl(x) is the floating point representation; x — f/(x) is
the rounding error

Viad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning
Computer arithmetic

Rounding rules

@ chop = round toward zero: truncate the base—f
representation after p — 1st digit

@ round to nearest: fl(x) is the closest machine number to x

Viad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning
Computer arithmetic

Machine precision

@ machine precision, emach
o with chopping: €nach = '
o with rounding to nearest: €mach = 38" "

@ called also unit roundoff; the smallest number e such that

fil1+e€)>1
@ maximum relative error of representation
fl(x) — x
T < €mach

@ usually 0 < UFL < €nach < OFL

Viad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning
Computer arithmetic

Machine precision - example

Forp=2,p=3,L=-1,U=1,

@ €mach = (0.01)2 = (0.25)40 with chopping

@ €mach = (0.001)2 = (0.125)4 with rounding to nearest
The usual case (IEEE fp systems):

@ €mach = 272* ~ 1077 in single precision

@ €mach = 2722 ~ 1078 in double precision

@ — about 7 and 16 decimals of precision, respectively

@ (in R: p-value < 2.2e — 16)

Viad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning
Computer arithmetic

Gradual underflow

@ to improve representation of numbers around 0 - use
subnormal (or denormalized) numbers

@ when exponent is at minimum, alow leading digits to be 0
@ subnormals are less precise
@ — gradual underflow

Viad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning
Computer arithmetic

Special values

IEEE standard:
@ Inf: infinity; the result of 1/0
@ NaN: the result of 0/0 or Inf/Inf
@ special representation of the exponent field

Viad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning
Computer arithmetic

Floating-point arithmetic

addition/subtraction: denormalization might be required:
3.52 x 10% 4+ 1.97 x 10° = 0.0352 x 10° 4- 1.97 x 10° =
2.0052 x 10° — might cause loss of some digits

o multiplication/division: the result may not be representable
@ overflow is more serious than underflow: how to approximate

large numbers?

o for underflow, the result may be approximated by 0
@ in FP arithm. addition and multiplication are commutative but

not associative: if € is slightly smaller than emach, then
(1+e)+e=1,but1+ (e+e¢)>1

ideally, x flop y = fl(xopy); |IEEE standard ensures this for
within range results

Viad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning
Computer arithmetic

Example: divergent series

1
25

n=1

@ in FP arithm, the sum of the series is finite;
@ depending on the system, this is because:

o after a while, the sum overflows
o 1/nunderflows
o for all n such that

1 =9
E < €mach ’; E

the sum does not change anymore

Viad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning
Computer arithmetic

Cancellation

@ subtracting 2 numbers of the same magnitude usually cancels
the most significant digits:
1.92403 x 10% — 1.92275 x 102 = 1.28000 x 10" — only 3
significant digits

@ let € > 0 be slightly smaller than emach, then (1 +¢€) — (1 —¢)
yields 0 in FP arithmetic, instead of 2e.

Viad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning
Computer arithmetic

Cancellation - example

For the quadratic equation, ax? + bx + ¢ = 0, the two solutions are

given by
—b + Vb2 —4ac
X12 =
2a
Problems:

o for very large/small coefficients, the terms b? or 4ac may
over-/underflow — rescale coeficients by max{a, b, c}.

@ cancellation between —b and +/- can be avoided by computing
; _ 2c
one root using x = Y~y

Exercise: let x; = 2000, xo = 0.05 be the roots of a quadratic
equation. Compute the coefficients and then use the above
formulas to retrieve the roots. Try roots () function in MarLag. ol

Viad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning
Computer arithmetic

Cancellation - another example

R R

© N o o

P(X) = (X -1)% = X5 -6X° + 15X* - 20X3 + 15X2 - 6X + 1.
What happens around X = 1?

epsilon = [.01, .005, .0017];
for k=1:3
b4 = linspace(l—epsilon(k), l+epsilon(k), 100);
px = x.76 — 6*x.75 + 15%xx.74 — 20xx."3 + 15%xx."2
— 6*x + 1;
px0 = (x — 1).76;
subplot (2, 3, k);
plot(x, px, '-b', x, zeros(1l,100), '—-r');
axis([l—-epsilon(k), l+epsilon(k), —-max(abs(px)),
max (abs (px)) 1) ;
subplot (2, 3, k+3);
plot(x, px0, '-b', x, zeros(l, 100), '—-r');
axis([l-epsilon(k), l+epsilon(k), —-max(abs(px0)),
max (abs (px0))]);
end

Viad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning
Computer arithmetic

..mathematically equivalent, but numerically different...

0.990 to 1.010 0.995 to 1.005 0.999 to 1.001
le-12 T The-14 T 1 - T
le-14 fe-15
5e-13 L
5e-15 pe-15
ol -4 ok -4 o
-be-15 - Je-
Sel3r le-14 o
B -fe-15
“le-12 | | -Lbe-14 -1 | N
le-12 THe-14 Fr— —=je-18
le-14 |
5e-13 he-19
5e-15 [—
0 - o} - o} -
-be-15 |- e
-5e-13 - B -5e-19 - —
-le-14
“le-12 1be-14 =1 | | 14e18

Viad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning
Computer arithmetic

HOMEWORK

Let x = [a, b] € R? and let p be its Euclidean norm, p = Va2 + b2.
However, using this formula is prone to under- and over-flow errors.

@ show that min{|al, |bl} < p < V2max{|al, |bl}

@ implement in MarLaB a procedure that would avoid
unnecessary under-/over-flows Hint: p = c+/(a/c)? + (b/c)2.
Find a suitable c...

Viad Bi7740: Scientific computing

Introduction
Sensitivity and conditioning
Computer arithmetic

In MATLAB...

@ you can change the format of FP in output using format
option
@ emach is returned by the function eps () :
o single precision: eps (single (1)) gives
1.1921e - 07 =228
o double precision: eps (double (1)) gives
2.2204e — 16 = 2792
@ to obtain the smallest or largest single/double precision
numbers, use realmin ('single'), realmin('double'),
realmax ('single'), realmax('double')

@ you have the special constants 1nf and NaN

Viad Bi7740: Scientific computing

	Introduction
	Sensitivity and conditioning
	Computer arithmetic

