Systems of linear equations - reminder
Solving linear systems

Special cases

Examples and applications

Bi7740: Scientific computing

Systems of linear equations

Vlad Popovici
popovici@iba.muni.cz

Institute of Biostatistics and Analyses
Masaryk University, Brno

Viad Bi7740: Scientific computing



Systems of linear equations - reminder
Solving linear systems

Special cases

Examples and applications

Additional references:
@ Golub, Van Loan, Matrix Computations, Johns Hopkins Univ.
Press, 3rd Ed. 1996

Viad Bi7740: Scientific computing



Systems of linear equations - reminder
Solving linear systems

Special cases

Examples and applications

Outline

0 Systems of linear equations - reminder
@ Norms
@ Linear systems
@ Conditioning
@ Accuracy

© solving linear systems
@ Diagonal systems
@ Triangular systems
@ Gaussian elimination

Q Special cases
@ Symmetric positive definite systems

0 Examples and applications

Viad Bi7740: Scientific computing



Systems of linear equations - reminder
Solving linear systems

Special cases

Examples and applications

Outline

Norms

Linear systems
Conditioning
Accuracy

0 Systems of linear equations - reminder

Vlad

Bi7740: Scientific computing



Systems of linear equations - reminder
Solving linear systems

Special cases

Examples and applications

Outline

Norms

Linear systems
Conditioning
Accuracy

0 Systems of linear equations - reminder

@ Norms

Vlad

Bi7740: Scientific computing



Systems of linear equations - reminder
Solving linear systems

Norms
Linear systems

Special cases Conditioning
Examples and applications Accuracy
Vectors and norms
X1
Let x be a vector, x = = [X1,...,X3]T. The p—norm is defined
Xn

as

1
n 5
lIxllp = § IxilP
i=1

Special cases:
@ p = 1: (Manhattan or city-block norm)
X114 = 22 Ixil
@ p = 2: (Euclidean norm) x|}z = /%; x2

@ p — o0: (co—norm) ||x||c = max; |xil

\ j

e
AN

The unit circles. IBA

Viad Bi7740: Scientific computing



Systems of linear equations - reminder Norms

Solving linear systems Linear systems
Special cases Conditioning
Examples and applications Accuracy

Vector norms - properties

V¥x,y € R" and for any norm,

o |x||>0with|x|=0ex=0

o llax|l = lal - [Ix]l, Yo

o |x + vyl < |Ix|l + |ly]l (triangle inequality); also
HixI =Nyl < IIx =yl

o [Ixll1 = lIxll2 = [1[[oo

@ |Ix|ly < Vnllx|l2, lIX|l2 < Vnl|x||l« — norms differ by at most a
constant, hence they are equivalent

‘MATLABZ norm(x, p) ‘
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Matrix norms

Let
ayr a2 ain

dn1  dap2 ann
be a square matrix.
defined based on a vector norm

©

ax JAXII
Xl

the maximum "stretching" applled to a vector by the matrix A

Al =

IAlly = max; X7, |a;| (maximum absolute column sum)
IAllc = max; XL ; |aj| (maximum absolute row sum)

© 6 o o

[|All2 =7 (we'll see it later) fB.E
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Let A and B be two square matrices

o ||A|>0ifA#0

@ ||[aA|| = |a| - ||Al], for any scalar «

° [|A+ Bl < [IAl+BII
o [|A-Bl <[A]l-BI

o ||Ax|| < ||A]l - ||x]| for any vector x

‘MATLABZ norm (A, p) ‘
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In general, a system of linear equations has the form:

a1 Xy + aieXe + -+ - + ainXn = by
ag1Xy + ageXo + -+ - + @nXn = b2

ami X1 + @maX2 + -+ + @mnXn = bm

or, in matrix format,

Ax=Db

where A is an m x n matrix (say, A € Mmy.n(R)), b and x are
vectors with m and n elements, respectively.

In other words: can the vector b be expressed as a linear
combination of columns of matrix A?

Vlad
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In MATLAB

@ general operator "matrix division" \
@ this is a wrapper for various algorithms - some we will discuss

@ [MaraB: x = A \ b
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Square matrices case (m = n)

A € M, n(R) is singular if it has any of the following equivalent
properties:
@ A has no inverse (A" does not exist)
o det(A) =0
@ rank(A) < n (rank: maximum number of rows or columns that
are linearly independent)
@ Az = 0 for some vector z # 0

Otherwise, the matrix is nonsingular.
If A is nonsingular, there is a unique solution; otherwise,

depending on b, there might be zero or infinitely many solutions.
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Geometrical interpretation (2D):
@ alinear equation defines a line
o if A is nonsingular, the two lines intersect

o if Ais singular, the two lines may be parallel (no solution) or
identical (infinitely many solutions)
If A'is singular and b € span(A) the system is consistent and has
infinitely many solutions. (span(A) is the vector space generated
by the columns of A.)
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Example - nonsingular matrix

12 -1
o Ie’[A:[3 4]andb:[_1

], then A is nonsingular and there

, , , 1
is a unique solution, x = [_1]

Naive Matlab solution:
>> A=[1 2; 3 4]; b=[-1;-1];
>> x = inv(A)*b;
>> X

¥ =

1.0000
-1.0000
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1 2

° Ie’[A:[2 4

is a unique solution, x =

Naive Matlab solution:

-1

] andb = [:1] then A is nonsingular and there

>> A=[1 2; 2 4]; b=[-1;-11;

>> x = inv(A)*b

Warning: Matrix is singular to working precision.
X =
-Inf
-Inf
w
IBA
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Singularity, norm and conditioning

@ condition number of a nonsingular square matrix is
cond(A) = [IA]| - |A7|

@ convention: cond(A) = oo for singular A

@ ratio between maximum streching and maximum shrinking of
a nonzero vector

A

e

@ large cond(A) indicates a matrix close to singularity
@ small det(A) does not imply large cond(A)
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Condition number - properties

© 6 6 o

cond(A) > 1

cond(l) = 1 (I is the identity matrix - Matlab: eye(n))
cond(aA) = cond(A), for any A and scalar «

for a diagonal matrix D = diag(d;), d; # 0 we have
cond(D) = xld

condition number is used for assessing the accuracy of the
solutions to linear systems
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Condition number:
@ exact computation requires matrix inverse:

o ||A]| is easy to compute

e computing at low cost ||A~"|| is difficult — expensive (even
more than finding the solutions to the problem) and prone to
numerical instability

@ in practice: estimated as a byproduct of the solution process

One approach: find lower bounds on ||A~"|| and, thus, on cond(A).

If Ax =y it follows that

lIxIl 1
— < [IATI,

iyl —
with "=" achieved for some optimal y. So one needs to find y such
that the lhs above is maximized to get a good estimate of ||A~"||.
MATLAB: cond () and condest (). ‘
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lll-conditioned matrices - example

Consider the Hilbert matrix H with elements hj = # It arises,

for example, from least square approximation of functions by

polynomials, and
1 . .
h,-j:f x"dx
0

In MarLag use the hilb and invhilb for H and H™' respectively.
p

Vlad
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o g~ W0 N =

for

end

n = 5:1

0

H = hilb(n);

invH = invhilb(n);
c = cond(H);
dl = det (H)

d2 = det (H)

n,

cond=4.
cond=1.
cond=4.
cond=1.
cond=4.
cond=1.

766073e+05
495106e+07
753674e+08
525758e+10
931544e+11
602457e+13

det2=1.00011969

)

% exact inverse for n < 15!

* det (inv (H)) ;

* det (invH) ;

fprintf ('n=%2d\tcond=%e\tdet1=%10.8f\tdet2=%10.8f\n",
c, dl, d2);

det1=1.00000000 det2=1.00000000
det1=0.99999997 det2=1.00000000
detl1=0.99977251 det2=1.00000000
det1=0.80314726 det2=1.00000007
det1=-31.86617838 det2=1.00000344
det1=-150414807.25005761
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Accuracy of solutions

@ condition number — error bounds

@ let x be the solution to Ax = b and X the solution to
AX =b + Ab

o let Ax = X — x, then
b + Ab = Ax + AAX,

from which IAX] Al
X

—— < cond(A)——

[I]| ( (bl

HOMEWORK: prove the above relation. ‘
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llAX]| IAb|
—— < cond(A)——
1] lIbl|

Relative change in solution

The condition number bounds the relative changes in the solution
due to a relative change in rhs, regardless of the algorithm used to

compute the solution.

Vlad
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The condition number cond(A) defines the uncertainty in x, given

the uncertainty in b.

TN

preimage

Similarly, if (A + D)X = b, then

IAXI _
T

Vlad

image

DI
(A)IIAII
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o if data (A, b) is accurate to machine precision, then the
relative error in solution can be approximated by

1% — x|

- ~ A

i.e. the solution loses about log;,(cond(A)) decimal digits of
accuracy with respect to input data

@ the analysis is about relative error in the largest components
of the solution vector; relative error can be larger in the
smaller components.
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@ the condition number is affected by the scaling of A, so one
way of improving the solution is by rescaling - this does not
improve a matrix near singularity.

@ example: A = [g) 2]b = [l]

@ the matrix A is ill-conditioned for small e: cond(A) = 1/e.

@ by scaling the 2nd eq with 1/¢, the matrix becomes well
conditioned.

@ in general, it is more difficult...
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Example:

well conditioned

Vlad

ill-conditioned
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Residuals

@ residual vector: r = b — AX for X being the approximate
solutionto Ax = b

o theoretically: if A is nonsingular then ||[X —x|| =0 < ||r|| =0

@ practically, small residual is not necessarily equivalent to small
error

=SHES lax| I#l

&= A g

small relative residual implies small relative error, only if A is
well-conditioned
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Residuals - backward error analysis

@ let D be the "delta" matrix, such that X is the exact solution of

(A+D)x = b,

then 5
IFl___ 1Dl

AL - [IX]] — [IA]l

@ large relative residual implies large backward error and
indicates an unstable algorithm

o stable algorithms yield small relative residuals, regardless
conditioning of nonsingular A
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General strategy

Diagonal systems
Triangular systems
Gaussian elimination

@ transform the system (mainly A) such that the solution is
easier to compute (but unchanged)

o if M is a nonsingular matrix the systems
Ax=Db

and
MAx = Mb

have the same solution.  HOMEWORK: prove it!

@ trivial transformations:
o permutation of rows in the system: use a permutation matrix
(has exactly one 1 in each row and column, rest is 0).
o diagonal scaling: may improve the accuracy
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A few relevant functions in MarLaB

Please, use help <name> for details!

(*]

®© 6 6 6 o o

linsolve: solves linear systems Ax = B via various
methods. You can specify the properties of A.

\ operator is a wrapper for various methods

1u computes LU factorization

triu returns upper triangular part of a matrix

tril returns lower triangular part of a matrix

diag returns the diagonal of a matrix

cond, condest used for estimating the condition number
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Diagonal systems
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The simplest linear system is
ai 0 . 0 1[xq by
0 aoo ... 0 Xo b2
0 O e ann Xn bn

with obvious solution x = [b;/aiji];.

1 function x = diagsolve (A, Db)

2 % Solve A x = b for a diagonal matrix A.

3 d = diag(a);

4 if any(d == 0), error('A is singular!'), end
5 x =b ./ d;

6 return
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a1 X1 + aiz2X2 + aisXs = by
a2oX2 + @23X3 = b2

assXs = bs
which is equivalent to
a X =Dbi -—apeXe —aizXs
a22X2 = by —axX3
assXs = b
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Diagonal systems
Triangular systems
Gaussian elimination

@ Ais lower triangular if aj = 0 for i < j or upper triangular if

aj=0fori>j

@ solution is obtained by back-substitution: for

ayr a2 a3 ... ain

0 doop das3y ... Aaop

A=|0 as ... asn

0 0 ... am

Xn = bn/ann
n

Xi = b;—Za;jx,- /aj,fori=n-1,n-2,...,1 &
j=itt IBA
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Diagonal systems
Triangular systems
Gaussian elimination

(not vectorized!)

Algorithm: Back-substitution algorithm

forj=nto1do
if a; = 0 then
‘ stop;
end if
Xj < bj/aj;
fori=1toj—-1do
‘ b,' — b,' — ajjXj,
end for
end for
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Exercise

@ derive the forward substitution method for lower triangular
matrices

@ implement in MarLaB the functions fwsolve and bksolve for
forward and backward substitution
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Elementary elimination matrices

Diagonal systems
Triangular systems
Gaussian elimination

Goal

Find tranformations of nonsingular matrices that would lead to
triangular systems.

Example: let z = [z;, zo] T with z; # 0, then

[—221/21 (1)] [Z] N [201]

— use linear combinations or rows

Viad Bi7740: Scientific computing



Systems of linear equations - reminder
Solving linear systems

Special cases

Examples and applications

Diagonal systems
Triangular systems
Gaussian elimination

In general,
1 0
0 1
Miz =
g 0 —Mi 41
_0 oo _mn

where m;j = zj/zx, fori =k +1,..

@ pivot: z

., n.

o1 Zq
0 Zk
O[|zk+1
111 z,

(241

Zk

@ Gaussian transformation or elementary elimination

transformation: My

Vlad
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Properties of the Gaussian transformation

Diagonal systems
Triangular systems
Gaussian elimination

@ My is nonsingular (it is lower triangular, full rank matrix)

© My =1-me], wherem =[0,...,0,Mky1,...,my]" and e is
the k—th column of the identity matrix

° M;1 =1+ me[: just the sign is changed for the inverse.
Denote Lx = My

o if M;=1-te/,j> k, then
MM, =1 - me] +te],

so the result is sort of "union” of the two matrices.
Note that the order of multiplication is important.

@ a similar result holds for the inverses
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Diagonal systems
Triangular systems
Gaussian elimination

@ transform the system Ax = b into a triangular system:

o choose My with ay; as pivot to eliminate the 1st column below
asy. The new system is M;Ax = Myb. The solution stays the
same.

o next choose M, with a,, as pivot to eliminate the 2nd colum
below as.. The new system is MoM; Ax = M>M;b. The solution
stays the same.

o ... until we get a triangular system

@ solve the system
Mn_1 ...M1AX = Mn_1 M1b

by back-substitution
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LU factorization
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Triangular systems
Gaussian elimination

o letM=M,...M;andL =M"

o L= (Mn_1 ...|V|1)_1 = |V|1_1 ...M;L =L¢...L4
which is unit lower triangular.

@ by design, U = MA is upper triangular

@ then ‘ A=M'U=LU ‘with L lower triangular and U upper
triangular

@ Gaussian elimination is a factorization of a matrix as a product
of two triangular matrices: LU factorization

o LU factorization is unique up to a scaling factor of diagonal
scaling of factors
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o if A is factorized into LU, the system becomes LUx = b and is
solved by forward-substitution (reverse order of backward s.)
in lower triangular system Ly = b followed by
back-substitution in Ux =y

@ Gaussian elimination and LU factorization express the same
solution process

@ | MarLaB example:

1 > A =([011; 2 -1 -1; 11 -11; b= [2 0 11";
2 >> [L,U] = 1u(d);
3 > vy =L \ b; x =0\ vy;
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Note: | det(A) = det(L) det(U) |

if at any stage, the leading entry on the diagonal is zero —
cannot choose the pivot — interchange the row with some row
below with a non-zero pivot

if there is no way to choose a proper pivot, the matrix U will be
singular

but the factorization can be performed! the back-substitution
will fail however.
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Experiment

(from C. Van Loan, "Introduction to scientific computing")

Consider the system

with the solution [1 1]7.

Write a MarLas code to solve it using LU factorization, for
€=1072,10"%,...,10718.

Discuss the results!
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Another application of LU decomposition

Diagonal systems
Triangular systems
Gaussian elimination

Consider you have to compute the scalar
a=2"A'beR,

with z,b € RN and A € R™" nonsingular.
But

x=A"b

is the solution of the linear system Ax = b. So, you should use LU
decomposition, compute x and then a = z"x. In Martag:

t [L,U] = 1lu(h);
2y =L\ b; x=0U\y;
3 alpha = z' * x;
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Improving stability

(]

chose the pivot to minimize error propagation

@ choose the entry of largest magnitude on or below the

diagonal as pivot

o this is called partial pivoting
@ each My is preceded by a permutation matrix Py to

interchange rows

o still MA =U, butM = M,_1P_1...M{P4

L = M~ is triangular, but not necessarily lower triangular

in general
(Pp—1...P1) A=PA=LU

check again previous MarLaB example

@ try [L, U, P] = lu(Rh); fB.E
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o if the pivot is sought as the largest entry in the entire
unreduced submatrix, then you have complete pivoting

@ requires permutations or rows AND columns
@ there are 2 permutations matrices, P, Q, such that

PAQ = LU

@ better numerical stability, but much more expensive in
computation

@ in general, only partial pivoting is used with Gaussian
elimination

@ in MarLaB is implemented only for sparse matrices.
See help 1lu
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Pivoting is not required if:

Diagonal systems
Triangular systems
Gaussian elimination

o the matrix is diagonally dominant:

n

> lajl<lagl, j=1,....n
i=1,i#j
o the matrix is symmetric positive definite:

A=ATandx"Ax > 0,¥x # 0

Examples of symmetric positive (semi-)definite matrices from
practice?
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Residuals

@ r = b — Ax where X was obtained by Gaussian elimination
@ it can be shown that
el _ el
A%~ A=
where E is the backward error in data matrix: (A+ E)X =b
and p = max(uj)/ max(aj) is the growth factor
@ without pivoting, p is unbounded so the algorithm is unstable
@ with partial pivoting, p < 2"

il
[+ ~
in practice, p ~ 1, 80 rgrzr S Némach
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Residuals, cont'd

Diagonal systems
Triangular systems
Gaussian elimination

@ Gaussian elimination with partial pivoting yields small relative
residuals, regardless of the conditioning

@ however, computed solution is close to real solution only if the
system is well-conditioned

@ yet a smaller growth factor can be obtained with complete
pivoting, but the extra cost may not be worth
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Triangular systems

Special cases ) AP
peclal ¢z Gaussian elimination

Examples and applications

Example: in a 3-digit decimal arithmetic, solve

X1
X2

0.641 0.242
0.321 0.121

0.883
0.442

o the exact solution is [1 1]7
o the Gaussian elimination leads to X = [0.782 1.58]

o the exact residual is r = [-0.000622 — 0.000202]" — as
small as can be expected with 3 digits precision

o the erroris large: ||X — x|| = 0.6196 which is ~ 62% relative
error!

@ this is because of ill-conditioning, cond(A) > 4000
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Diagonal systems
Triangular systems
Gaussian elimination

What happend? The Gaussian elimination led to

" osaree 1

0.883
0 0.000242 | | x2

—-0.000383

S0 Xxp was the result of the division of quantities below emach,
yielding an arbitrary result. The x; is computed to satisfy the 1st
eq., resulting in small residual but large error.
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Implementation and complexity

Diagonal systems
Triangular systems
Gaussian elimination

The general form of the Gaussian elimination is

for ido
for jdo
for k do
| aj <« aj — (aik/axk)axj
end for
end for
end for

@ order of the loops is not important (for the final result)

@ ...but, depending on the memory storage, they have different
performance
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Diagonal systems
Triangular systems
Gaussian elimination

Implementation and complexity (cont’'d)

there are about n®/3 floating-point operations — the
complexity is O(n®)

the forward-/back-substitutions require about n®
multiplications and n? additions (for a single b)

if you try to invert A, x = A~'b, you need n® operations — 3x
more the LU factorization

inversion is less precise: difference between 37 x 18 and
18/3 in fixed-precision arithmetic

matrix iinversion is convenient in formulas, but in practice you
do factorizations!

Ex: A~'B should use LU factorization of A and then forward-
and back-substitutions with columns of B
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Gauss-Jordan elimination

Diagonal systems
Triangular systems
Gaussian elimination

@ idea: for each element of the diagonal, eliminate all the
elements below AND above in the column using combinations

of rows
@ the elimination matrix has the form
1 ... 0 -m O ... O]
O ... 1 —=mgy 0 ... O
0O ... 0 1 0 ... 0
0 ... 0 —myyq 1 0
o ... 0 -mpy O ... 1]

where mj = aj/ax fori=1,...,n
@ do the same to the right hand side term, too
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Gauss-Jordan elimination, cont’d

Diagonal systems
Triangular systems
Gaussian elimination

@ the result is a diagonal matrix on lhs

o the solution is obained by dividing the entries on the
transformed rhs by the terms of the diagonal

@ it requires n®/2 multiplications and the same number of
additions — 50% more expensive than LU decomposition

@ despite being more expensive, it is sometimes preferred to LU
decomposition for parallel implementations

o if the rhs is initialized with an identity matrix, after G-J
elimination the rhs becomes A"
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Solving series of similar problems

Diagonal systems
Triangular systems
Gaussian elimination

@ idea: try to reuse as much as possible from previous
computations

@ if only rhs changes, LU decomposition does not have to be
recomputed

o if A suffers only rank one changes, one can still use
pre-computed A~! (Sherman-Morrison formula):

(A-uv) " =A"T 4+ A lu(1 —v A Tu) v A

o this has a complexity of O(n?) compared to O(n®) that is
needed by a new inversion
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Diagonal systems
Triangular systems
Gaussian elimination

For a modified equation,
(A—uv')x=b
the solution is
x=A"b+Au(1 -v A u)"'v' A b

and is solved by the following procedure
@ solve Az=u,soz=A"u
@ solve Ay =b,soy=A"b
o compute x =y + ((vTy)/(1 —v'z))z
If A is already factored, this approach has a complexity O(n?)
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Comments on scaling

Diagonal systems
Triangular systems
Gaussian elimination

@ theoretically, multiplying the terms on diagonal of A and
corresponding entries of b would not change the solution

@ in practice, it affects conditioning, choice of pivot and, by
consequence, accuracy
|
e

1 0

0 €
is ill-conditioned for small €, since cond(A) = 1/e. It becomes
well-conditioned if the second equation is multiplied by 1/e.

o Example:
X1
X2
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lterative refinements

Diagonal systems
Triangular systems
Gaussian elimination

o let xg be the approximate solution to Ax = b and ry = b — Axg
be the corresponding residual

@ let then zg be the solution to Az = g

@ an improved approximate solution is then Xy = x¢ + 2g
HOMEWORK: prove that Axy = b

@ repeat until convergence

@ the process needs higher precision for computing a useful
residual

@ not often used, but sometimes useful
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Symmetric positive definite systems

Outline

e Special cases

|
IBA
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Special forms of linear systems

Symmetric positive definite systems

For some special cases of A storage and computation time can be
saved.
For example, if A is

o symmetric: A = AT, a; = g for all i, j

@ positive definite: z'Az > 0, ¥z # 0

@ band diagonal: a;j = 0if |i — j| > 8, where § is the bandwidth
@ sparse: most of the elements of A are zero
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Symmetric positive definite systems

Outline

Q Special cases
@ Symmetric positive definite systems
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Symmetric positive definite systems

Symmetric positive definite systems

@ Cholesky decomposition:

A=LL"

where L is lower triangular.

@ A admits a Cholesky decomposition if and only if it is
symmetric positive definite

o if the decomposition exists, it is unique
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Cholesky decomposition algorithm with overwriting of A

Algorithm: Cholesky decomposition algorithm

for j=1tondo

fork =1toj—-1do
fori=jtondo

’ ajj < ajj — aikjk;

end for

end for

djj < Vaj

fork =j+1tondo

| ay < ay/ay;
end for
end for

Viad Bi7740: Scientific computing



Systems of linear equations - reminder
Solving linear systems " - -
ving finear sy Symmetric positive definite systems

Special cases

Examples and applications

Cholesky decomposition - properties

o
o
(]

does not need pivoting to maintain stability
only n®/6 multiplications and n®/6 additions are required

for the algorithm presented, only the lower triangle of A is
modified, and can be restored, if needed, from the upper
triangle

requires about half the computations and half of the memory
compared with LU factorization

there are variations of Cholesky decomposition for banded
matrices, for positive semi-definite matrices (semi-Cholesky
decomposition) and for symmetric indefinite matrices
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Suggestions of methods to use

Symmetric positive definite systems

If A'is a real dense square matrix...
@ ...use LU decomposition with partial pivoting: A = PLU

@ ...and is a band matrix, use LU decomposition with pivoting
and row interchanges

@ ...and is tridiagonal, use Gaussian elimination

@ ...and is symmetric positive definite, use Cholesky
decomposition

@ ...and is symmetric tridiagonal, use special Cholesky with
pivoting, A = LDL"
@ ...and is symmetric indefinite, use special Cholesky
In MarLAB, check the functions: chol, ichol, 1d1, 1u, ilu. als
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Outline

e Examples and applications
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Polynomial interpolation

@ a function p(x) interpolates a set of points
{(xi, yi)li = 0,..., N} if it satisfies y; = p(x;) forall i = 0,..., N.
@ this leads to a system of N + 1 equations. If p(x) is a
polynomial of degree M, p(x) = ayxM + --- + asx + ao, the
system is of the form

ao+a1X0+"‘+aMX(I)V’:)’O

ao+a1XN+'“+aMX,I\\I/’=yN

where the unknowns are ay, ..., au.

o if M = N — Vandermonde matrix

@ in MarLaB check the functions polyfit and polyval

@ write the MarLas function to solve the interpolation problem for g
M = N. Do NOT use MarLae’s own functions for interpolation!  1BA
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1D Poisson problem

A two-point boundary problem,
-u"(x) =y(x), x€[0,1], wu(0)=u(1)=0,

where y is a given continuous function on [0, 1]. If y cannot be
integrated exactly, approximate solutions are sought. Using finite
differences,

hy_y(x-1h
u'(x) = lim u(x + 3) _ u(x—13)
u”(x) = lim ulx+h) - 2‘;7(2)() +u(x - h)

Divide the interval [0, 1] in m + 1 equal subintervals of length
h =1/(m+ 1) and let x; = ih be the limits of these subtintervals,  gg*
i=0,....m+1. IBA
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Denote y(x;) = y(ih) = y; and u(x;) = u(ih) = u;. Then, the
problem becomes

Uit — 20 + Ui
h2

This can be written as a linear system:

:yl’ i:1,...,m, UOZUm-H:O.

(2 -1 0 .
1 2 - 1 n
] ) ] Uz Y2
Tu_l0 o =]
0 u
-1 2 -1 m—1 Ym—1
, 0 -1 2|tUm Ym

where the matrix T is a Toeplitz matrix. The system can be solved al
using the Levinson algorithm - see 1levinson function in MarLas. IBA
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