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Eigenvalue problems

Standard eigenvalue problem

Given a square matrix A ∈ Mn×n(R), find a scalar λ and a vector
x ∈ Rn, x , 0, such that

Ax = λx.

λ is called eigenvalue and x is called eigenvector

a similar "left" eigenvector can be defined as yT A = λyT , but
this would be equivalent to a "right" eigenvalue problem (as
above) with AT as matrix

the definition can be extended to complex-valued matrices

λ can be complex, even if A ∈ Mn×n(R)

Vlad Bi7740: Scientific computing



Eigenvalue problems
Existence, uniqueness and conditioning

Computation
Eigenvalue problems

Characteristic polynomial

previous eq. is equivalent to (A − λI)x = 0 which admits
nonzero solutions if and only if (A − λI) is singular, i.e.

det(A − λI) = 0

det(. . . ) is the characteristic polynomial of matrix A and its
roots λi are the eigenvalues of A

(from Fundamental Theorem of Algebra) for an n × n matrix
there are n eigenvalues (may not all be real or distinct)
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reciprocal: a polynomial p(λ) = c0 + c1λ + cn−1λ
n−1 + λn has

a companion matrix
0 0 . . . 0 −c0

1 0 . . . 0 −c1
...

...
. . .

...
...

0 0 . . . 1 −cn−1


the characteristic polynomial is not used in numerical
computation, because:

finding its roots may imply an infinite number of steps
of the sensitivity of the coefficients
too much work to compute the coefficients and find the roots
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Example

Let A =

[
0 1
0 −1

]
. The characteristic equation is

det(A − λI) = 0⇔

λ2 + λ = 0

with solutions λ1 = 0 and λ2 = −1. For eigenvectors v1, v2

(non-null!):

(A − λ1I)v1 =

[
0 1
0 −1

] [
v11

v21

]
=

[
v21

−v21

]
:=

[
0
0

]
so v21 = 0. We choose v11 such that ‖v1‖ = 1, so v11 = 1.

Similarly, for λ2 = −1 we get v2 =

[
1/
√

2
−1/
√

2

]
.
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Example - in Matlab

1 >> A = [0 1; 0 −1];
2 >> [V, L] = eig(A) % V: eigenvectors, L: eigenvalues
3 V =
4 1.0000 −0.7071
5 0 0.7071
6 L =
7 0 0
8 0 −1
9 >> eig(A) % only eigenvalues

10

11 >> roots(poly(A)) % not the way to go normally
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Sensitivity of the characteristic polynomial

let A =

[
1 ε

ε 1

]
with ε > 0 and slightly smaller than εmach

the exact eigenvalues are 1 + ε and 1 − ε

in floating-point arithmetic,

det(A − λI) = λ2 − 2λ + (1 − ε2) = λ2 − 2λ + 1

with the solution 1 (double root)
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a simple eigenvalue is a simple solution of the characteristic
polynomial (multiplicity of the root is 1)

a defective matrix has eigenvalues with multiplicity larger than
1, meaning less than n independent eigenvectors

a nondefective matrix has exactly n linearly independent
eigenvectors and can be diagonalized

Q−1AQ = Λ

where Q is a nonsingular matrix of eigenvectors

Matlab: Adiag = inv(Q)*A*Q

Vlad Bi7740: Scientific computing



Eigenvalue problems
Existence, uniqueness and conditioning

Computation
Eigenvalue problems

Eigen-decomposition

it follows that if A admits n independent eigenvectors, it can
be decomposed (factorized) as

A = QΛQ−1

with Q having the eigenvectors of A as columns, and Λ a
diagonal matrix with eigenvalues on the diagonal

theoretically, A−1 = QΛ−1Q−1 (if λi , 0 and all eigenvalues are
distinct)

if A is normal (AHA = AHA) then Q becomes unitary

if A is real symmetric, then Q is orthogonal
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Eigenvectors

the eigenvectors can be arbitrarily scaled

usually, the eigenvectors are normalized, ‖x‖ = 1

the eigenspace is Sλ = {x|Ax = λx}

a subspace S ⊂ Rn is invariant if AS ⊆ S

for xi eigenvectors, span({xi}) is an invariant subspace
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Some useful properties

det(A) =
∏N

i=1 λ
ni
i , where ni is the multiplicity of eigenvalue λi

tr(A) =
∑N

i=1 niλi

the eigenvalues of A−1 are λ−1
i (for λi , 0)

the eigenvectors of A−1 are the same as those of A

A admits an eigen-decomposition if all eigenvalues are distinct

if A is invertible it does not imply that it can be
eigen-decomposed; reciprocally, if A admits an
eigen-decomposition, it does not imply it can be inverted

A can be inverted if and only if λi , 0,∀i
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Before solving an eigenvalue problem...

do I need all the eigenvalues?

do I need the eigenvectors as well?

is A real or complex?

is A small, dense or large and sparse?

is there anything special about A? e.g.: symmetric, diagonal,
orthogonal, Hermitian, etc etc
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conditioning of EV problem is different than conditioning of
linear systems for the same matrix

sensitivity is "not uniform" among eigenvectors/eigenvalues

for a simple eigenvalue λ, the condition is 1/‖yHx|, where x
and y are the corresponding right and left normalized
eigenvectors (and yH is the conjugate transpose)

so the condition is 1/ cos(x̂, y)

a perturbation of order ε in A may perturb the eigenvalue λ by
as much as ε/ cos(x̂, y)

for special cases of A, special forms of conditioning can be
derived
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Computation - general ideas

a matrix B is similar to A if there exists a nonsingular matrix T
such that B = T−1AT

if y is an eigenvector of B then x = Ty is an eigenvector of A
and
HOMEWORK: prove that A and B have the same eigenvalues

transformations:
shift: A← A − σI
inversion: A← A−1 (if A is nonsingular)
power: A← Ak

polynomial: let p be a polynomial, then A← p(A)
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Forms attainable by similarity

For a matrix A with given property, the matrices T and B exist such
that B = T−1AT has the desired property:

A T B
distinct eigenvalues nonsingular diagonal

real symmetric orthogonal real diagonal
complex Hermitian unitary real diagonal

normal unitary diagonal
arbitrary real orthogonal real block triangular (Schur)

arbitrary unitary upper triangular (Schur)
arbitrary nonsingular almost diagonal
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If A is diagonal...

the eigenvalues are the diagonal entries

the eigenvectors are the columns of the identity matrix

If a matrix is not diagonalizable, one can obtain a Jordan form:

λ1 1
λ1 1

λ1

λ2 1
λ2

λ3
. . .

λk 1
λk


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If A is triangular (Schur form, in general)...

eigenvalues are the elements on the diagonal

eigenvectors are obtained as follows:
If

A − λI =

U11 u U13

0 0 vT

O 0 U33


is triangular, then U11y = u can be solved for y, so that

x =

 y
−1
0


is the corresponding eigenvector
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Symmetric matrices - Jacobi method

idea: start with a symetric matrix A0 and iteratively form
Ak+1 = JT

k Ak Jk , where Jk is a plane rotation chose to
annihilate a symmetric pair of entries in Ak with the goal of
diagonalizing A
a rotation matrix has the form[

cos θ sin θ
− sin θ cos θ

]
the problem is to find θ

for A =

[
a b
b c

]
and requiring that JT AJ is diagonal, we obtain

1 + tan θ
a − c

b
− tan2 θ = 0

from which we use the root with the smallest magnitude
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Power iterations

is the simplest metod to compute one eigenvalue-eigenvector
pair

the matrix is repeatedly multiplied by an intial starting vector

let λ1 be the absolute largest eigenvalue of A, with the
corresponding eigenvector v1

start with x0 , 0 and iterate:

xk = Axk−1 k = 1, 2, . . .

the process converges to a scaled version of v1

corresponding to the eigenvalue λ1
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Power iterations - geometrical interpretation

v1v2

x0 x1 xn
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Power iterations - convergence

Let v1, . . . , vn be the eigenvectors of A. Then, any vector x0 can be
written as

x0 =
n∑

i=1

αivi .

Then

xk =Axk−1 = · · · = Ak x0 =
n∑

i=1

λk
i αivi

=λk
1

α1v1 +
n∑

i=2

(λi/λ1)kαivi


and limk→∞(λi/λ1)k → 0 since |λi/λ1| < 1.
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Power iterations, cont’d

theoretically, it can happen that x0 has no component in v1

(i.e. α1 = 0)

the iterations cannot converge to a complex solution

there might be several equally large and maximal
eigenvalues, so the iterations converge to a linear
combination of the corresponding eigenvectors

the values of xk grow geometrically with k and this can lead to
over-/under-flow→ use normalization: at each step normalize
xk by ‖xk ‖∞

the rate of convergence depends on |λ2/λ1|: smaller the ratio,
faster the convergence→ it might be possible to find a shift by
σ such that |(λ2 − σ)/(λ1 − σ)| < |λ2/λ1| which accelerates
convergence

Vlad Bi7740: Scientific computing



Eigenvalue problems
Existence, uniqueness and conditioning

Computation

Special forms
Power iteration
Generalized eigenvalue problem

Power iterations: Exercise

Implement the following procedure in Matlab, to find the largest
eigenvalue and the corresponding eignvector for a matrix A:

start with an initial vector x0 , 0, λ0 = 0
for k = 1, 2, . . . compute the new approximation of the

eigenvector: xk = Axk−1
‖xk−1‖∞

eigenvalue: λk = max{x1k , . . . , xnk }

stop iterating if a maximum number of iterations has been
attained or if the changes between two consecutive iterations
is below a threshold: ‖xk − xk−1‖ < ε and |λk − λk−1| < ε

scale the final approximation such that ‖xK ‖ = 1

Scaling at each iteration prevents over-/under-flow and ensures
that the largest component of xk is λk .
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Inverse iteration

if the smallest eigenvalue is needed: the eigenvalues of A are
the reciprocals of the eigenvalues of A−1. Try:
[v,l] = eig_power(inv(A)); l = 1/l;

inverse iteration scheme:

Ayk = xk−1

xk = yk/‖yk ‖∞

this is equivalent to power iterations applied to A
A−1 is not computed explicitly
factorization of A is used to solve the system of linear eqs.
converges to the eigenvector corresponding to the smallest
eigenvalue
the shifting strategy can also be applied
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Shifted inverse power iterations

if one wants eigenvalues close to a certain value s (not equal
to any eigenvalue): transform the problem:

Av = λv −→ (A − sI)v = (λ − s)v

the eigenvalue sought is

λs =
1

largest eigenvalue of (A − sI)−1
+ s

this method works only if there is a single eigenvalue λs

try: [v,l] = eig_power(inv(A − ...

s*eye(size(A)))); l = 1/l+s;
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Rayleigh quotient

let A be a real matrix with x an approximate eigenvector

to find the corresponding eigenvalue λ one can solve the
system

Ax u λx

for λ unknown (n × 1 least squares approx. problem)

form normal eqs.: xT Ax = λxT x and obtain the LS solution

λ =
xT Ax
xT x

this is the Rayleigh quotient
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Rayleigh q., cont’d

R.q. gives a good estimate of the eigenvalue corresponding to
an eigenvector

R.q. can be used as a shift to speed up convergence of the
inverse iteration

Rayleigh quotient iteration: for some x0 , 0,

σk =
xT

k Axk

xT
k xk

solve (A − σk I)yk+1 = xk

xk+1 = yk+1/‖yk+1‖∞

usually 2-3 iterations are enough
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Rayleigh q., cont’d

R.q. iteration is very efficient for symmetric matrices

solving a different system (different shift) at each iteration
introduces some overhead, depending on the form of the
matrix

the method can be extended to complex matrices using the
conjugate transpose

the R.q. has values between the minimum and maximum
eigenvalues of A - this is sometimes called numerical range
(or field of values) of the matrix A
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Deflation

computes sequentially each of the (eigenvalue, eigenvector)
pairs

if λ1 and x1 are already computed, then transform the matrix
to remove them and proceed to compute λ2 and x2; iterate

this process is known as deflation

let H be a nonsingular matrix such as Hx1 = α1e1 (e.g. a
Householder transformation)

apply this transformation to A:

HAH−1 =

[
λ1 bT

0 B

]
where B is a matrix of order n − 1 with eigenvalues λ2, . . . , λn
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Deflation, cont’d

then, use B to compute λ2

eigenvectors and eigenvalues of B are linked to those of A as
follows:

if y2 is an eigenvector of B corresponding to λ2, then

x2 = H−1
[
α
y2

]
where

α =
bT y2

λ2 − λ1
,

provided that λ1 , λ2.

...and repeat...
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Alternative deflation

let u1 be a vector such that uT
1 x1 = λ1

it follows that A − x1uT
1 has the eigenvalues 0, λ2, . . . , λn

examples of u vectors:
u1 = λ1x1 if A is symmetric and ‖x1‖2 = 1
u1 = λ1y1 where y1 is the left eigenvector normalized such
that yT

1 x1 = 1
u1 = AT ek , is x1 is normalized such that ‖x1‖∞ = 1 and the
k−th component of x1 is 1.

Vlad Bi7740: Scientific computing



Eigenvalue problems
Existence, uniqueness and conditioning

Computation

Special forms
Power iteration
Generalized eigenvalue problem

Simultaneous iteration

in power iteration method, xk = Axk−1 converged to an
eigevector

why not using a matrix, such that Xk = AXk−1 would converge
simultaneously to several eigenvectors?

start with a n × p matrix X0 of rank p and iterate

Xk = AXk−1

span(bXk ) converges to an invariant space determined by the
p largest eigenvalues of A, provided that |λp | > |λp+1|

the method is called simultaneous iteration of subspace
iteration
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Simultaneous iteration, cont’d

to avoid over-/under-flow and bad conditioning with increasing
k , the columns of Xk need to be normalized
using the reduced QR decomposition avoids these problems:

Qk Rk = Xk−1 QR decomposition of previous X

Xk = AQk

this is the orthogonal iteration scheme
if the eigenvalues are distinct in modulus, the process
converges to a block trinagular form
if p = n and X0 = I, the series of matrices

Ak = QH
k AQk

converges to (block) triangular form yielding all the
eigenvalues of A
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Simultaneous iteration, cont’d

alternative: QR iteration: compute Ak without forming the
product explicitly
start with A0 = A and at step k :

Qk Rk = Ak−1 compute the QR decomposition

Ak = Rk Qk form the inverse product

diagonal entries (or eigenvalues of diagonal blocks) converge
to eigenvalues of A
the product of orthogonal matrices Qk converges to the matrix
of corresponding eigenvectors
if A is symmetric, Ak converges to a diagonal matrix
special forms of A lead to faster convergence→ use some
pretransformations of the matrix to speed up
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cost of QR iteration method:
for symmetric matrices: ∼ 4

3 n3 for eigenvalues only and ∼ 9n3

for both eigenvalues and eigenvectors
for general matrices: ∼ 10n3 for eigenvalues only and ∼ 25n3

for both eigenvalues and eigenvectors

other methods:
Krylov subspace methods: reduce A to a tridiagonal matrix
and find eigen-values/-vectors by QR
Lanczos method for symmetric matrices
spectrum-slicing: for real symmetric matrices, it can find how
many eigenvalues are below a given σ ∈ R→ by "slicing" the
space, the eigenvalues can be isolated; see also the Sturm
sequence
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The generalized eigenvalue problem

it has the form
Ax = λBx

where A and B are n × n matrices

if any of A or B is nonsingular, the problem can be
transformed in a standard eigenvalue problem

this is not recommended because loss of accuracy (roundoff
errors) and loss of symmetry (if one of A or B is symmetric

better: use the QZ algorithm
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QZ algorithm

if A and B are triangular, the eigenvalues are λi = aii/bii , for
bii , 0

the QZ algorithm reduces A and B simultaneously to upper
triangular matrices by orthogonal transformations
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Singular Value Decomposition - again

we saw that SVD of a m × n matrix A has the form

A = UΣVT

where U is m ×m orthogonal matrix and V is n × n orthogonal
matrix and Σ is m × n diagonal matrix with non-negative
elements on the diagonal

this is a eigenvalue-like problem

the columns of U and V are the left and right singular vectors,
respectively and σii are the singular values
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The relation between SVD and the eigen-decomposition

SVD can be applied to any m × n matrix, while the
eigen-decomposition is applied only to square matrices
the singular values are non-negative while the eigenvalues
can be negative
let A = UΣVT be SVD of A⇒
AT A = (VΣT UT )(UΣVT ) = VΣT ΣVT

also, AT A is symmetric real matrix, so it has a
eigendecomposition AT A = QΛQT , with Q orthogonal. By
unicity of decompositions, it follows that

ΣT Σ = Λ

V = Q

so σi =
√
λi
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