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Numerical experiments: simulations

General approach:
@ identify the random variable of interest X
Q identify/postulate its distributional properties

Q@ generate one or several large samples identical and
independely distributed Xi, ..., X, from the distribution of X

Q estimate the quantity of interest (e.g. estimate EX using
sample average) and assess its accuracy (e.g. via confidence
intervals)
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Random number generators (RNGs)

@ all random variables can be generated by transforming a
uniformly distributed random variable X € U(0, 1)

o there is no algorithmic (deterministic) way of generating
infinitely long sequences of true random numbers
@ computers generate pseudorandom numbers

o there exist devices to generate (believed to be) random
sequences: e.g. radioactive decay: the time elapsed between
emission of two consecutive particles (.3, y). See:
http://www. fourmilab.ch/hotbits
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RNGs, cont'd

@ two aspects:

@ generate good pseudorandom numbers in U(0, 1):
independent and uniformly distributed
@ find proper trasformations to the desired distribution

@ you cannot prove that an RNG is truly random

o there are a batteries of tests that an RNG must pass to be
acceptable

o for any RNG, one can find a statistical test that will reject it as
a good generator
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RNGs, cont'd

Formalism:
@ an RNG is a structure (S, u, f, U, g) where

o Sis afinite set of states

o u is a probability distribution on S used to select the initial seed
(state) sq

o f: S — Sis a transition function. The state of the RNG
evolves according to the recurrence s; = f(s;_1) for i > 1

o U is the output space. Usually U = (0, 1)

e g: S — Uis the output function. The numbers u; = g(s;) are
called random numbers produced by the RNG
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RNGs, cont'd

(~]

S is finite = 3/ > 0, > 0 finite such that s, = s

©

this implies that Vi > I, u;j; = u; since both f and g are
deterministic

(]

the smallest positive j for which this happens is called period
lenght of the RNG and is denoted by p

obviously, p < |S|
ex.: if the state is represented on k bits, then p < 2K

©

[
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RNGs, cont'd

Quality criteria:
@ extremly long period p
o efficient implementation

(~]

repeatability

(~]

portability

©

availability of jump-ahead property: quickly compute the s,
given s;, so you can partition a long sequence in
subsequences to be used in parallel

@ randomness
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RNGs, cont'd

Coverage:
o letW; = {(up,...,u)lso € S}
@ is W, uniformly covering the hypercube (0, 1)!?

o tests of discrepancy between the empirical distribution of W;
and the uniform distribution

o figure of merit: a measure of the coverage quality
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RNGs, cont'd

Randomness and i.i.d:

o statistical tests: try to detect empirical evidence against Hy:
"u; are realizations of i.i.d U(0,1)". Example: diehard tests
(Marsaglia, 1995)

@ passing more tests improves the confidence in RNG, but
cannot prove the RNG is foolproof for all cases

@ good RNG passes a set of simple tests

@ polynomial time perfect RNG: there is no polynomial-time
algorithm the can predict any given bit of u; with a probability
of success > 1/2 + 27%¢, for some € > 0, after observing
Up,...,Uj—1

o the usual RNGs are not polynomial time perfect
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RNGs, cont'd

Multiple Recursive Generator has a general recurrence
xi = (@1Xj—1 + -+ + akXj—x) mod m

where m (modulus) and k (order) are integers carefully selected,
and coefficients ay, ..., ax € Zp.

The state is 8; = (Xi_k41,...,Xi)"

When m is prime, it is possible to select a; such that the period
length p = mk — 1.
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Example (historical, not in serious use anymore): MLCG (Lehmer,
1948): multiplicative linear congruential generator:

Si+1 = (@18 + ap)mod m

This generates integers that are converted to (0, 1) by division with
m. Weakness: (Marsaglia, 1968): if (si, ..., Si+4) represent some
points in a d—dimensional space, they have a lattice structure: they
lie in a number of specific hyperplanes.
Famous multipliers (ag = 0):
@ a; =23, m=10% +1: original version, has higher order
correlations
@ a; = 65539, m = 22°: infamous RANDU generator (IBM 360
series, in the 1970s): catastrophic higher order correlations
@ a; = 69069, m = 2%2 (Marsaglia, 1972): good properties and
converage up to 6 dimensions IBA
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RNGs, cont'd

Exercise:
@ write a function

rng.mlcg = function(n, a1=20, a0=0, m=53, s0=21)

which implements the procedure MLCG (with some default
parameters), and returns a sequence of n numbers.

@ generate a sequence and plot ujy1 Vs u;

> U = rng.mlcg(200)
> plot(u[2:200],u[1:199])

o discuss!
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RNGs, cont'd

Exercise:

@ let n =20000

@ execute
> u = rng.mlcg(n, a1=65539, a0=0, m=2"31, s0=10)
>z = (u-0.5)/(2"31-1) # map to (0,1)
> hist(z) # is it reasonably uniform?
>2z1 = z[1:(n=-2)]; z2 = z[2:(n-1)]; 23 = z[3:n]
> plot(z1, z2, pch=19, xlim=c(0,1), ylim=c(0,1))
> x11(); plot(z1[z3 < 0.01], z2[z3 < 0.01],

pch=19, xlim=c(0,1), ylim=c(0,1))

o discuss!
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RNGs, cont'd

In R: don't let the RNG to be "randomly" selected!

o for serious work, always set the seed, check the RNG, etc:
they might be version-dependent; also you want other to be
able to reproduce your results

@ read the help for RNG

@ uniform random numbers are generated with runif ()
function

@ check also {d, p, g}unif () functions
o read the help for .Random.seed ()

Viad Bi7740: Scientific computing



Random number generators
Non-uniform random variable generation
Monte Carlo methods for inference

Outline
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Non-uniform r.v. generation (NRNG)

Requirements:

@ correctness: a good approximation of the theoretical
distribution

@ robustness: RNG should work well on a large range of
parameters

o efficiency
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NRNG: inversion method

@ best choice, when feasible

o to generate X with distribution function F, starting from a
uniform variate U € (0, 1), apply the inverse F~'to U:

X = F(U) := min{x|F(x) > U}
@ easy to see that the distribution of X is as required:
P[X < x] = P[F'(U) < x] = P[U < F(x)] = F(x)

o for some distributions, F~' can be obtained analytically. Ex.:
Weibull distribution F(x) = 1 — exp(—(x/B8)%), with «, 8 > 0;
has the inverse F~1(U) = g[-In(1 - U)]"/®

@ other distributions do not have a close form inverse: e.g.
normal, y2,... = approximations fB./T
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NRNG: inversion method, cont’d

Example (principle of inversion):

# return X with cdf F, for a 1L ___ E
# uniform r.v. 0 < U < 1
# (look—up table method) U
X=0
while (F(X) < U) X = X + 1
return (X)
0 X
[T
IBA
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NRNG: Rejection method

@ consider F with a compact support and
bounded F(x) < k

@ consider a series of points (Xj, Yi)
uniformly distributed under the density
function

o the distribution of X; is the same as the
distribution of X (F): Pla < Xj < b] =
prbobability of a point falling in the region =
J, F(x)dx

@ procedure:

@ generate X ~ U[a,b] and Y ~ U0, 1]
independently .
Q if Y < F(X) return X, otherwise repeat fB./T
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NRNG: Rejection method

Exercise: Implement the rejection method for
generating random variates from the pdf

X ifo<x<1 Histogram of z

F(x)=32-x ifl<x<?2 ;

0 otherwise e

Generate n = 5000 r.v., plot their histogram o
(use AN
hist (..., freg=FALSE, ylim=ec(0,1,01)) 00 05 10 15 20

and the original pdf.
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Generating normally distributed r.v.

@ you can use the rejection method

@ alternative: Box-Muller algorithm: based on the observation
that the coordinates of points in a 2D Cartesian system
described by 2 independent normal distributions correspond
to polar coordinates that are realizations of 2 independent
uniform distributions

@ Box-Muller transform: if Uy, Uy are independent uniformly
distributed on (0,1), then

Zy = rcosf = y—2In Uy cos(2nUz)
Zy =rsinf = +/-2In U sin(27Uz)
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Improved Box-Muller algorithm, with rejection step:
@ generate Uy, U ~ U(-1,1)
Q accept S? = U? + U3 if S? < 1, else go to step 1
Q set W= —2'”3—322
Q retun X =UWand Y = U W

Exercise: Implement the procedure above in R!
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Other methods for NRNG

@ kernel density estimation: approximate the inverse using a
kernels for which efficient generators exist

@ composition: consider F to be a convex combination of
several distributions F;:

F(x) = ). piFi(x)
j

To generate from F, one generates J with probability p; and
then generates X from F;

@ convolution: if X = Yq +--- + Y}, with Y; independent with
specified distributions, then generate the Yj’'s and sum them

o etcetc
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Efficient implementations exist in R for:
@ normal distribution: rnorm; log-normal: dlnorm
@ binomial distribution: rbinom
@ Poisson distribution: rpois
9o ...
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© Monte Carlo methods for inference
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MC methods for inference

General approach:
@ identify the random variable of interest X
Q identify/postulate its distributional properties

Q@ generate one or several large samples identical and
independently distributed Xi, ..., X, from the distribution of X

Q estimate the quantity of interest (e.g. estimate EX using
sample average) and assess its accuracy (e.g. via confidence
intervals)
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© Monte Carlo methods for inference
@ Inference about the mean
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MC inference about the mean

Reminder:
@ problem: compute z = EZ when x is not available analytically,
but Z can be simulated
@ consider nreplicates 71, ..., Z, of Z and estimate z by the
empirical mean z = Y, Z;/n
@ denote 0 = Var{Z} <
@ central limit theorem:

Vn(z - z) = N(0,0?), asn — o

o from this, an 1 — « confidence interval can be obtained as
A (2NN (o

(Z - Z1_Q/2ﬁ, zZ— ZQ/Z%)

where z, denotes the a—quantile of the normal distribution allE

(®(z0) = a) IBA
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MC for inference about the mean

Implement the following procedure:

@ write the R function pdf1 (n) to generate n = 1000 r.v. drawn
from
f(X) = 0.2Ny(X) + 0.3N2(X) + 0.5N3(X)

where N; are Gaussians with parameters u; = 0,01 = 0.5,
uo =6.5,00 =1.25, u3 = 14.5,03 = 0.75. Do not use for
loops or any function from the various nonstandard packages!

@ plot the density of the sample drawn and compare it with the
theoretical plot of the mixture density

@ repeat the procedure for n = 10000 and n = 100000. what do
you see?
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Density
0.00 0.05 0.10 0.15

density.default(x = x)

[ [
-5 0 5 10 15
N = 1000 Bandwidth = 1.294
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o
o

generate p = 1000 samples of n = 1000 r.v.: X[p X n]

compute X; as the sample average for each of the p samples
and the grand average X

@ what is the true mean of this mixture of Gaussians?

o test the normality of the distribution of X; (e.g.

shapiro.test())

estimate the 95% empirical confidence interval (using
guantiles of the distribution of %X;) and compare it with the
theoretical one (using sample variance for o) obtained from a
single sample (say, x[1,1)
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