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Introduction

resampling technique for statistical inference: assess
uncertainty

especially useful when no assumptions can be made on the
underlying model

confidence intervals without distributional assumptions

there are many versions of bootstrapping
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Example (from Efron, Tibshirani, 1993):

Group Heart attacks Subjects
aspirin 104 11037
placebo 189 11034

The odds ratio:
θ̂ =

104/11037
189/11034

= 0.55

so it seems that aspirin reduced the incidence of heart attacks.
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Log-odds can be approximated by the normal distribution, so we
use it to construct a 95% CI. Standard error is

SE(log(OR)) =
√

1/104 + 1/189 + 1/11037 + 1/11034 = 0.1228

giving a 95% CI for log θ:

log θ̂ ± 1.96 × SE(log(OR)) = (−0.839,−0.357)

with a corresponding 95% for θ obtained by exponentiating:
(0.432, 0.700).
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At the same time, aspirin seems to have a detrimental effect on
strokes

Group Heart attacks Subjects
aspirin 119 11037
placebo 98 11034

which leads to an odds ratio of θ̂ = 1.21 with a 95% CI of
(0.925, 1.583).
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...and how bootstrap would proceed to infering the CI:

create a sample for the treatment (s1) and one for the placebo
(s2) group as vectors containing as many 1s as case there are

draw with replacement a random sample from s1 and from s2,
of the same size as the groups

compute the odds ratios based on the drawn samples

repeat the process a number of times and record all the odds
ratios computed

using their empirical distribution, estimate the CI of interest

Vlad Bi7740: Scientific computing



Bootstrapping
Permutation tests

Introduction
Empirical distribution and the plug-in principle
Improved bootstrap confidence intervals
Bootstrapping for hypothesis test

set . seed ( 1 )
n1 = 11037; n1 . cases = 119; n2 = 11034; n2 . cases = 98
s1 = c ( rep (1 , n1 . cases ) , rep (0 , n1−n1 . cases ) )
s2 = c ( rep (1 , n2 . cases ) , rep (0 , n2−n2 . cases ) )
B = 1000; # number o f boo ts t rap samples
p = n2 / n1
the ta = rep (0 , B)
for ( i i n 1 :B) {

the ta [ i ] = p ∗ sum( sample ( s1 , n1 , replace = TRUE) ) /
sum( sample ( s2 , n2 , replace = TRUE) )

}
hist ( the ta )
quanti le ( theta , probs=c ( . 025 , . 9 7 5 ) )

2.5% 97.5%
0.9365309 1.5711275
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the CI estimate by the quantiles is
not the most precise nor efficient
that can be obtained by
bootstrapping

it works for symmetric, close to
normal distributions of the
bootstrap replicate
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The empirical distribution

the underlying probability distribution F generates the
observed sample:

F → (x1, . . . , xn) = x

the empirical distribution F̂ is the discrete distribution that puts
probability 1/n at each value xi , i = 1, . . . , n

F̂ assigns to a set A in the sample space of x its empirical
probability:

P̂rob{A } =
#{xi ∈ A }

n
= ProbF̂ {A }
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a parameter is a functional of the distribution function,
θ = t(F). Example: the mean

µ(F) =

∫
xdF(x)

a statistic is a function of the sample x. Example: the sample
average,

µ̂ =
1
n

n∑
i=1

xi

the plug-in estimate of a parameter θ = t(F) is defined to be

θ̂ = t(F̂)

(sometimes called summary statistics, estimates or estimator)
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Bootstrap estimate of the standard error

bootstrap sample: F̂ → (x∗1 , . . . , x
∗
n) = x∗ (resampling with

replacement)
let θ̂ = s(x) be an estimate for the parameter of interest
the question is: what is the standard error of the estimate?
bootstrap replication of θ̂ is

θ̂∗ = s(x∗)

ideal bootstrap estimate of SE:

seF̂ (θ̂∗)

i.e. the standard error of θ̂ for data sets of size n randomly
sampled from F̂
unfortunately, close-form formulas exist only for some
estimators
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General form of the bootstrap method

by resampling with
replacement from x one
samples from the empirical
distribution F̂

x∗b are the bootstrap
samples of size n

s(x∗b) = θ̂∗b are the bootstrap
replications of the parameter
of interest θ

Vlad Bi7740: Scientific computing



Bootstrapping
Permutation tests

Introduction
Empirical distribution and the plug-in principle
Improved bootstrap confidence intervals
Bootstrapping for hypothesis test

Bootstrap estimation of standard errors

1 select B independent bootstrap samples x∗1, . . . , x
∗
B

2 evaluate the bootstrap replicate of each bootstrap sample
θ̂∗b = s(x∗b), b = 1, 2, . . . ,B

3 estimate the standard error seF̂ (θ̂) by the sample standard
deviation of the B replications:

ŝeB =

√√√
1

B − 1

B∑
b=1

[
θ̂∗b − θ̂

∗
0

]2

where θ̂∗0 = 1
B

∑B
b=1 θ̂

∗
b
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Implement the previous procedure in R:

write a function bstrap.nonparam(x, B, s, ...) which
will generate B bootstrap samples x∗b and for each of them will
compute the bootstrap replicate of the parameter:
θ̂∗b = s(x∗b , · · · )

write a function bstrap.theta0(T) which computes the
bootstrap estimate of the parameter, given the bootstrap
replicates in the vector T (θ̂∗0)

write a function bstrap.se(T) which computes the bootstrap
estimate of the standard error of the parameter, given the
bootstrap replicates in the vector T (ŝeB )

use the Rainfall data set to compute the bootstrap estimate
of the mean, median and corresponding standard errors

HOMEWORK: compare with textbook results! (discuss!)
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Bias–corrected and accelerated CI

the quantile-based CI is not tight enough nor robust
idea: better exploit the quantiles of the empirical distribution
by:

correcting the bias
improving convergence

simple bootstrap quantile-based CI: for an (1 − 2α) coverage,
the bounds of the CI are given by (θ̂∗(α), θ̂∗(1−α)) where θ̂∗(q) is
the q−th quantile of the bootstrap replicates
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The BCa CI is given by (θ̂∗(α1), θ̂∗(α2)) where

α1 = Φ

(
ẑ0 +

ẑ0 + z(α)

1 − â(ẑ0 + z(α))

)
α2 = Φ

(
ẑ0 +

ẑ0 + z(1−α)

1 − â(ẑ0 + z(1−α))

)
where

Φ(·) is the standard normal CDF

z(q) is the q−th quantile of standard normal distribution

â and ẑ0 are cleverly chosen
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The parameters of BCa CIs:

ẑ0 = Φ−1

#{θ̂∗b < θ̂}

B


â =

∑n
i=1

(
θ̂(·) − θ̂(i)

)3

6
[∑n

i=1

(
θ̂(·) − θ̂(i)

)2
]3/2

where

θ̂(i) is the value of the parameter computed on the vector x
with the i−th component removed (jackknife values of the
parameter)

θ̂(·) =
∑n

i=1 θ̂(i)/n
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Exercise: implement the BCa procedure in R:

write a function
bstrap.bca(x, B, s, ..., alpha=c(0.025, 0.05))

that returns the low and upper bounds of the CI computed by
BCa method

you can use (call) the previous function bstrap.nonparam

compute the 90% and 95% BCa CIs for the mean of
Rainfall data: bstrap.bca(Rainfall, 2000, mean)
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Important properties of BCa CIs

transformation respecting: the bounds of the CIs transform
correctly if the parameter is changed by some function: e.g.
the CIs for

√
·-transformed parameter are obtained by taking

√ of the bounds of the parameter itself

second order accurate: convergence rate of 1/n to true
coverage
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Bootstrapping for tests

consider two possibly different distributions F and G,

F → z = (z1, . . . , zn)

G → y = (y1, . . . , ym)

hypotheses:

H0 : F = G

H1 : F , G

F = G ⇔ ProbF {A } = ProbG{A } for all sets A
observe a test statistic θ̂ (e.g. mean difference)
achieved significance level (ASL): probability of observing that
large a value under H0:

ASL = ProbH0{θ̂
∗ ≥ θ̂}
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Bootstrapping hypothesis testing procedure
1 choose a test statistic (not necessary a parameter): t(x) (for

example: t(x) = z̄ − ȳ)
2 draw B samples of size n + m from x = (z, y) and call the first

n observations z∗ and the remaining m y∗

3 evaluate t(·) for each sample: t(x∗b)
(for example

t(x∗b) = z̄∗b − ȳ∗b

)
for b = 1, 2, . . . ,B

4 approximate ASLboot by

ÂSLboot = #{t(x∗b) ≥ t(x)}/B
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Exercise:

consider the data vectors mouse.c and mouse.t for the
control and treatment arms of an experiment (some clinical
variable)

implement the bootstrap hypothesis testing procedure

use the test statistic

t(x) =
z̄ − ȳ

σ̄
√

1/n + 1/m

where

σ̄ =

√∑n
i=1(zi − z̄)2 +

∑m
i=1(yi − ȳ)2

(n + m − 2)

Vlad Bi7740: Scientific computing



Bootstrapping
Permutation tests

Introduction
Empirical distribution and the plug-in principle
Improved bootstrap confidence intervals
Bootstrapping for hypothesis test

Implementations in R

many R packages implement various bootstrapping
procedures

bootstrap package contains data and functions
accompanying the book by Efron and Tibshirani

boot package contains a lot of well tested and documented
functions
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Permutation tests

nonparametric testing procedure

allow testing hypotheses when the properties of the test
statistic under the null hypothesis are not known

do not make assumptions on the data

work on small data sets

idea: generate the distribution of the test statistic under the
null hypothesis from the data
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exact permutation tests: for (very) small data sets, generate
all permutations and compute the corresponding test statistics

random test: for large data sets, generate a number of random
permutations, for which compute the test statistic

test procedure: count how many times the test statistic from
the permutations is more extreme than the real test statistic
and reject H0 if the proportion is below the predefined α−level
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Example - two populations tests

consider the data vectors mouse.c and mouse.t for the
control and treatment arms of an experiment (some clinical
variable)

implement a permutation testing procedure for testing
H0 : there is no significant difference in the clinical variable
between control and treatment
vs
H1 : there is a significant difference in the clinical variable
between control and treatment

which test statistic? what to permute? how many
permutations?

what should be changed if the test was about superiority of
treatment vs control?
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