
A historical perspective
Why parallel computing?

Principles of parallel computing

Bi7740: Scientific computing
Introduction to parallel computing

Vlad Popovici
popovici@iba.muni.cz

Institute of Biostatistics and Analyses
Masaryk University, Brno

Vlad Bi7740: Scientific computing

A historical perspective
Why parallel computing?

Principles of parallel computing

Supplemental bibliography

Kepner: Parallel Matlab. SIAM 2009

Mathworks: Parallel Computing Toolbox. User’s Guide

McCallum: Parallel R. O’Reilly 2012

Vlad Bi7740: Scientific computing

A historical perspective
Why parallel computing?

Principles of parallel computing

"I think there is a world market for maybe five computers."
(Thomas Watson, chairman of IBM, 1943)

"There is no reason for any individual to have a computer in
their home." (Ken Olson, founder Digital Equipment
Corporation, 1977)

"640K of memory ought to be enough for anybody." Bill Gates,
chairman of Microsoft, 1981

Vlad Bi7740: Scientific computing

A historical perspective
Why parallel computing?

Principles of parallel computing

Outline

1 A historical perspective

2 Why parallel computing?

3 Principles of parallel computing
Introduction
Programming models
Implementations

Vlad Bi7740: Scientific computing

A historical perspective
Why parallel computing?

Principles of parallel computing

∼ 2500 BC: Babylon - the first
abacus

∼ 100 BC: Antikythera device -
believed to be the first mechanical
computer

first half of the 19th century:
Charles Babbage’s differential
machine (to tabulate polynomials)
and analytical machine (only
design)

1941: Z3 computer by Konrad
Zuse: first programmable, fully
automatic computing machine

source: Wikipedia
Vlad Bi7740: Scientific computing

A historical perspective
Why parallel computing?

Principles of parallel computing

∼ 1840 Charles Babbage produces the differential machine, a
mechanical computer.

source: Wikipedia Vlad Bi7740: Scientific computing

A historical perspective
Why parallel computing?

Principles of parallel computing

1941: Z3 computer: electro-mechanical computer, ∼ 2000 relays,
22-bit words, operating at 5-10 Hz.

source: Wikipedia

Vlad Bi7740: Scientific computing

A historical perspective
Why parallel computing?

Principles of parallel computing

1946: ENIAC - Electronic Numerical Integrator And Computer
used initially by US Army to compute tables for artilery. Uses
vacuum tubes as switches.

source: Wikipedia

Vlad Bi7740: Scientific computing

A historical perspective
Why parallel computing?

Principles of parallel computing

1976: Cray-1 - the first successful supercomputer

Vlad Bi7740: Scientific computing

A historical perspective
Why parallel computing?

Principles of parallel computing

...fast forward: Tianhe-2 (top supercomputer as Nov. 2013): 33.86
PFlop/s, 3,120,000 cores; 1,024,000 GB, CPU: Intel Xeon

Vlad Bi7740: Scientific computing

A historical perspective
Why parallel computing?

Principles of parallel computing

Moore’s law

Gordon E. Moore (co-founder Intel): "Cramming More Components
onto Integrated Circuits", Electronics Magazine, 1965

source: Wikipedia
Vlad Bi7740: Scientific computing

A historical perspective
Why parallel computing?

Principles of parallel computing

Software and hardware

Software crises:

’60s-’70s: assembly language difficult to use for large complex
problems→ Fortran, C: provide abstraction and portability for
uniprocessors

’80s-’90s: problems in maintaining complex systems→
object-oriented programming (C++, Java)

∼ 2000s: sequential performance lags behind Moore’s law→
programmers are oblivious to hardware better compilers,
higher level languages, virtual machines

Vlad Bi7740: Scientific computing

A historical perspective
Why parallel computing?

Principles of parallel computing

Outline

1 A historical perspective

2 Why parallel computing?

3 Principles of parallel computing
Introduction
Programming models
Implementations

Vlad Bi7740: Scientific computing

A historical perspective
Why parallel computing?

Principles of parallel computing

parallel computing: using multiple execution units concurrently
to solve a problem
examples:

multi-core processors: several processors (cores) in a chip
shared memory processors (SMP): several processors
interconnected through a shared memory
cluster computer: several computers interconnected through
high-speed network

Vlad Bi7740: Scientific computing

A historical perspective
Why parallel computing?

Principles of parallel computing

Issues with the traditional model: power density

(Ross: Why CPU Frequency Stalled, IEEE Spectrum Magazine, 2008)

Vlad Bi7740: Scientific computing

A historical perspective
Why parallel computing?

Principles of parallel computing

Vlad Bi7740: Scientific computing

A historical perspective
Why parallel computing?

Principles of parallel computing

Issues cont’d: gains from implicit parallelism tapped out

Example: instruction-level parallelism. Machine instruction:
decomposed into 4-stages: fetch, decode, execute and write-back

Vlad Bi7740: Scientific computing

A historical perspective
Why parallel computing?

Principles of parallel computing

Issues cont’d

Other issues:

increase in production costs (decrease in "chip yield")

increase in amount of data to be processed

Solution: explicit parallelism

multi-core

multi-processor

multi-machine

Vlad Bi7740: Scientific computing

A historical perspective
Why parallel computing?

Principles of parallel computing

Introduction
Programming models
Implementations

Outline

1 A historical perspective

2 Why parallel computing?

3 Principles of parallel computing
Introduction
Programming models
Implementations

Vlad Bi7740: Scientific computing

A historical perspective
Why parallel computing?

Principles of parallel computing

Introduction
Programming models
Implementations

Outline

1 A historical perspective

2 Why parallel computing?

3 Principles of parallel computing
Introduction
Programming models
Implementations

Vlad Bi7740: Scientific computing

A historical perspective
Why parallel computing?

Principles of parallel computing

Introduction
Programming models
Implementations

Principles

identifying parallelism

granularity: more smaller or fewer larger tasks?

locality: data and instruction location

load balance: aim: no lost CPU cycles

synchronization

overhead

Vlad Bi7740: Scientific computing

A historical perspective
Why parallel computing?

Principles of parallel computing

Introduction
Programming models
Implementations

Identifying parallelism

Amdahl’s law:

Sn =
T1

Tn
≤

1
α+ (1 − α)/n

≤
1
α

where α is the fraction of the program that is strictly sequential, Ti

is the execution time on i processors and Si is the speed-up
obtained by using i processors instead of 1.

Vlad Bi7740: Scientific computing

A historical perspective
Why parallel computing?

Principles of parallel computing

Introduction
Programming models
Implementations

Identifying parallelism

implicit parallelism
hardware level: superscalar processors, multi-core, cluster
computing
compiler level: parallelizing compilers

explicit parallelism
programming language level
library level

Vlad Bi7740: Scientific computing

A historical perspective
Why parallel computing?

Principles of parallel computing

Introduction
Programming models
Implementations

Processing architectures

Flynn’s taxonomy ("old way"): Single/Multiple Instruction ×
Single/Multiple Data

Source: Wikipedia

Examples: SISD: mainframes; SIMD: GPUs; MISD: fault tolerant
systems; MIMD: most computers nowadays

Vlad Bi7740: Scientific computing

A historical perspective
Why parallel computing?

Principles of parallel computing

Introduction
Programming models
Implementations

Locality: a box in a box in a box...

Vlad Bi7740: Scientific computing

A historical perspective
Why parallel computing?

Principles of parallel computing

Introduction
Programming models
Implementations

Computing topologies

Source: Grama - Introduction to Parallel Computing

Vlad Bi7740: Scientific computing

A historical perspective
Why parallel computing?

Principles of parallel computing

Introduction
Programming models
Implementations

Shared memory: multicore or
multi-CPU machines

Distributed memory: clusters
with single CPUs nodes

Vlad Bi7740: Scientific computing

A historical perspective
Why parallel computing?

Principles of parallel computing

Introduction
Programming models
Implementations

Hybrid systems

a limited number of CPUs have access to a pooled memory
using more CPUs implies communication over network
through message-passing

Vlad Bi7740: Scientific computing

A historical perspective
Why parallel computing?

Principles of parallel computing

Introduction
Programming models
Implementations

Hybrid systems with multicore CPUs

extension of the hybrid model
communication becomes increasingly complex
many levels in the memory hierachy: cache(s), local main
memory, other node’s memory, etc
you can add accelerators: e.g, GPUs
requires a new programming model, and different
communication protocols

Vlad Bi7740: Scientific computing

A historical perspective
Why parallel computing?

Principles of parallel computing

Introduction
Programming models
Implementations

Load balancing

aim: distribute evenly the load (work) on all available
resources...

...and thus minimize the time a resource is idle
causes of imbalanced load:

insufficient paralelism
unequal task size (poor design?)

Vlad Bi7740: Scientific computing

A historical perspective
Why parallel computing?

Principles of parallel computing

Introduction
Programming models
Implementations

Outline

1 A historical perspective

2 Why parallel computing?

3 Principles of parallel computing
Introduction
Programming models
Implementations

Vlad Bi7740: Scientific computing

A historical perspective
Why parallel computing?

Principles of parallel computing

Introduction
Programming models
Implementations

Types of parallelism

data parallelism: each processor performs the same task on
different data (h/w: SIMD, MIMD)

task parallelism: each processor performs a different task on
the same data (h/w: MISD, MIMD)

usually, both types of parallelism are present

Vlad Bi7740: Scientific computing

A historical perspective
Why parallel computing?

Principles of parallel computing

Introduction
Programming models
Implementations

Example: re-annotation of a microarray chip

(embarrassingly parallel problem)
Problem: map (BLAST) each probe from a microarray against the
latest version of the human genome (RefSeq).
Naive implementation on 2 CPUs:

program :
. . .
i f CPU == ’CPU1’ then

idx = 1 , . . , Np / 2
e l s e i f CPU == ’CPU2’ then

idx = Np / 2 + 1 , . . . ,N
end i f

BLAST(Probes [idx])
. . .

program :
. . .
i dx = 1 , . . , Np / 2

BLAST(Probes [idx])
. . .

program :
. . .
i dx = Np / 2 + 1 , . . . ,N

BLAST(Probes [idx])
. . .

Better ways of distributing the data exists for this problem! Ex:
distribute also the RefSeq...

Vlad Bi7740: Scientific computing

A historical perspective
Why parallel computing?

Principles of parallel computing

Introduction
Programming models
Implementations

Problem decomposition

split the computations into concurrent tasks

build the task-dependency graph

there is no one-size-fits-all technique

some methods: recursive decomposition, data-decomposition,
exploratory decomposition and speculative decomposition

Vlad Bi7740: Scientific computing

A historical perspective
Why parallel computing?

Principles of parallel computing

Introduction
Programming models
Implementations

Recursive decomposition: example

Problem: find the minimum of a vector

proc s e r i a l _min (A, n)
min = A [1]
f o r i = 2 to n do

i f A [i] < min
then min = A[i]

end f o r
r e t u r n min

end s e r i a l _min

proc rec_min (A, i , j)
i f i == j
then min = A[i]
e lse

lmin = rec_min (A, i , j / 2)
rmin = rec_min (A, j / 2+1 , j)
i f lmin < rmin
then min = lmin
e lse min = rmin
end i f

end i f
r e t u r n min

end rec_min

Vlad Bi7740: Scientific computing

A historical perspective
Why parallel computing?

Principles of parallel computing

Introduction
Programming models
Implementations

Data decomposition: example

Matrix multiplication: A · B = C. Write it as[
A11 A12

A21 A22

]
·

[
B11 B12

B21 B22

]
=

[
C11 C12

C21 C22

]
and distribute the four tasks:

Task 1: C11 = A11B11 + A12B21

Task 2: C12 = A11B12 + A12B22

Task 3: C21 = A21B11 + A22B21

Task 4: C22 = A21B12 + A22B22

Vlad Bi7740: Scientific computing

A historical perspective
Why parallel computing?

Principles of parallel computing

Introduction
Programming models
Implementations

Other decompositions

exploratory decomposition: decompose the search space for
the solution and search for a solution in each subspace; then
choose among the solutions

speculative decomposition: launch alternative computation
branches in parallel while waiting for input for deciding which
branch to use

hybrid decompositions

Vlad Bi7740: Scientific computing

A historical perspective
Why parallel computing?

Principles of parallel computing

Introduction
Programming models
Implementations

Mapping techniques

problem decomposition→ tasks

the tasks need to be allocated (mapped) to
processors/processes

objective: minimize the execution time
overheads: time spent for everything else but actually solving
the problem:

inter-process interaction - synchronization and control
time spent being idle - poor load balancing

reduce the process inter-dependencies and communication:
e.g. maximize data locality

improve load balancing

reduce blocking operations

Vlad Bi7740: Scientific computing

A historical perspective
Why parallel computing?

Principles of parallel computing

Introduction
Programming models
Implementations

Outline

1 A historical perspective

2 Why parallel computing?

3 Principles of parallel computing
Introduction
Programming models
Implementations

Vlad Bi7740: Scientific computing

A historical perspective
Why parallel computing?

Principles of parallel computing

Introduction
Programming models
Implementations

Implementations on multihtread/multicore machines

POSIX threads (pthreads): OS-level paralelism.
threads: lightweight processes
the same program runs on single- or multi-core machines
OS has the responsibility of mapping the threads
needs low-level programming, dedicated library

OpenMP: built on top of pthreads for SIMD-kind of parallelism
implemented through compiler directives
easier to use than pthreads
performance depends on compiler’s ’intelligence’

Vlad Bi7740: Scientific computing

A historical perspective
Why parallel computing?

Principles of parallel computing

Introduction
Programming models
Implementations

OpenMP: how does it look like? (
∑

i aibi)

double a [N] ;
double sum = 0 . 0 ;
i n t i , n , t i d ;

#pragma omp p a r a l l e l shared (a) p r i v a t e (i)
{

t i d = omp_get_ thread_num () ;

/ ∗ Only one of the threads do t h i s ∗ /
#pragma omp s i n g l e

{
n = omp_get_num_ threads () ; p r i n t f ("Number�of� threads�=�%d \ n " , n) ;

}
/ ∗ I n i t i a l i z e a ∗ /

#pragma omp for
for (i =0; i < N; i ++) {

a [i] = 1 . 0 ;
}

/ ∗ P a r a l l e l for loop computing the sum of a [i] ∗ /
#pragma omp for reduc t ion (+ :sum)

for (i =0; i < N; i ++) {
sum = sum + (a [i]) ;

}

} / ∗ End of p a r a l l e l reg ion ∗ /

Vlad Bi7740: Scientific computing

A historical perspective
Why parallel computing?

Principles of parallel computing

Introduction
Programming models
Implementations

Implementations on distributed-memory systems

MPI: Message Passing Interface
de facto standard for distributed memory programming
(clusters)
data must be manually decomposed
use special libraries
based on sending and receiving messages: data and
synchronization

PVM: Parallel Virtual Machine
previous library for cluster programming
based on message-passing principle
supplanted by MPI

Vlad Bi7740: Scientific computing

A historical perspective
Why parallel computing?

Principles of parallel computing

Introduction
Programming models
Implementations

MPI: how does it look like?

#include <mpi . h>
i n t main (i n t argc , char ∗argv [])
{

i n t numprocs , myid ;

MPI_ I n i t (&argc ,&argv) ;
MPI_Comm_ s ize (MPI_COMM_WORLD,&numprocs) ;
MPI_Comm_ rank (MPI_COMM_WORLD,&myid) ;

/ ∗ p r i n t out my rank and t h i s run ’ s�PE�s ize�∗ /
�� p r i n t f (" He l lo� from�%d�of�%d \ n " ,�myid , �numprocs) ;

��MPI_ F i n a l i z e () ;
}

Vlad Bi7740: Scientific computing

A historical perspective
Why parallel computing?

Principles of parallel computing

Introduction
Programming models
Implementations

Implementations in R

parallelism came as an after thought
target: massive data applications
tries to bring to R some of the libraries existing to other
languages
snow: for traditional clusters, supports PVM, MPI,...; is
portable (UNIX, Windows)
multicore: targets multi-core/-CPU machines; simple; does
not run on Windows; does not handle parallel RNGs
parallel: snow+multicore in new R (>=2.14); strange
interactions with OS
R+Hadoop: based on Hadoop cluster
RHIPE: based on Hadoop, targets map-reduce operations
Segue: apply-like calculations on Hadoop clusters, using
Amazon’s Elastic MapReduce

Vlad Bi7740: Scientific computing

A historical perspective
Why parallel computing?

Principles of parallel computing

Introduction
Programming models
Implementations

Implementations in Matlab

Parallel Computing Toolbox: can use multicore, GPUs,
clusters

still evolving

parallel for-loops, special array types, parallelized numerical
routines

tries to provide a uniform interface and isolation from
underlying implementation

runs several workers (computational engines) on a multicore
machine for single program multiple data problems

the same code can be run on a cluster or grid computing
service (needs Distributed Computing Server!)

Vlad Bi7740: Scientific computing

	A historical perspective
	Why parallel computing?
	Principles of parallel computing
	Introduction
	Programming models
	Implementations

