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"I think there is a world market for maybe five computers."
(Thomas Watson, chairman of IBM, 1943)

"There is no reason for any individual to have a computer in
their home." (Ken Olson, founder Digital Equipment
Corporation, 1977)

"640K of memory ought to be enough for anybody." Bill Gates,
chairman of Microsoft, 1981
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∼ 2500 BC: Babylon - the first
abacus

∼ 100 BC: Antikythera device -
believed to be the first mechanical
computer

first half of the 19th century:
Charles Babbage’s differential
machine (to tabulate polynomials)
and analytical machine (only
design)

1941: Z3 computer by Konrad
Zuse: first programmable, fully
automatic computing machine

source: Wikipedia
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∼ 1840 Charles Babbage produces the differential machine, a
mechanical computer.

source: Wikipedia Vlad Bi7740: Scientific computing
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1941: Z3 computer: electro-mechanical computer, ∼ 2000 relays,
22-bit words, operating at 5-10 Hz.

source: Wikipedia
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1946: ENIAC - Electronic Numerical Integrator And Computer
used initially by US Army to compute tables for artilery. Uses
vacuum tubes as switches.

source: Wikipedia
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1976: Cray-1 - the first successful supercomputer
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...fast forward: Tianhe-2 (top supercomputer as Nov. 2013): 33.86
PFlop/s, 3,120,000 cores; 1,024,000 GB, CPU: Intel Xeon
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Moore’s law

Gordon E. Moore (co-founder Intel): "Cramming More Components
onto Integrated Circuits", Electronics Magazine, 1965

source: Wikipedia
Vlad Bi7740: Scientific computing



A historical perspective
Why parallel computing?

Principles of parallel computing

Software and hardware

Software crises:

’60s-’70s: assembly language difficult to use for large complex
problems→ Fortran, C: provide abstraction and portability for
uniprocessors

’80s-’90s: problems in maintaining complex systems→
object-oriented programming (C++, Java)

∼ 2000s: sequential performance lags behind Moore’s law→
programmers are oblivious to hardware better compilers,
higher level languages, virtual machines
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parallel computing: using multiple execution units concurrently
to solve a problem
examples:

multi-core processors: several processors (cores) in a chip
shared memory processors (SMP): several processors
interconnected through a shared memory
cluster computer: several computers interconnected through
high-speed network
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Issues with the traditional model: power density

(Ross: Why CPU Frequency Stalled, IEEE Spectrum Magazine, 2008)
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Issues cont’d: gains from implicit parallelism tapped out

Example: instruction-level parallelism. Machine instruction:
decomposed into 4-stages: fetch, decode, execute and write-back
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Issues cont’d

Other issues:

increase in production costs (decrease in "chip yield")

increase in amount of data to be processed

Solution: explicit parallelism

multi-core

multi-processor

multi-machine
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Principles

identifying parallelism

granularity: more smaller or fewer larger tasks?

locality: data and instruction location

load balance: aim: no lost CPU cycles

synchronization

overhead
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Identifying parallelism

Amdahl’s law:

Sn =
T1

Tn
≤

1
α+ (1 − α)/n

≤
1
α

where α is the fraction of the program that is strictly sequential, Ti

is the execution time on i processors and Si is the speed-up
obtained by using i processors instead of 1.
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Identifying parallelism

implicit parallelism
hardware level: superscalar processors, multi-core, cluster
computing
compiler level: parallelizing compilers

explicit parallelism
programming language level
library level
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Processing architectures

Flynn’s taxonomy ("old way"): Single/Multiple Instruction ×
Single/Multiple Data

Source: Wikipedia

Examples: SISD: mainframes; SIMD: GPUs; MISD: fault tolerant
systems; MIMD: most computers nowadays
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Locality: a box in a box in a box...
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Computing topologies

Source: Grama - Introduction to Parallel Computing
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Shared memory: multicore or
multi-CPU machines

Distributed memory: clusters
with single CPUs nodes
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Hybrid systems

a limited number of CPUs have access to a pooled memory
using more CPUs implies communication over network
through message-passing
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Hybrid systems with multicore CPUs

extension of the hybrid model
communication becomes increasingly complex
many levels in the memory hierachy: cache(s), local main
memory, other node’s memory, etc
you can add accelerators: e.g, GPUs
requires a new programming model, and different
communication protocols
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Load balancing

aim: distribute evenly the load (work) on all available
resources...

...and thus minimize the time a resource is idle
causes of imbalanced load:

insufficient paralelism
unequal task size (poor design?)
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Types of parallelism

data parallelism: each processor performs the same task on
different data (h/w: SIMD, MIMD)

task parallelism: each processor performs a different task on
the same data (h/w: MISD, MIMD)

usually, both types of parallelism are present
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Example: re-annotation of a microarray chip

(embarrassingly parallel problem)
Problem: map (BLAST) each probe from a microarray against the
latest version of the human genome (RefSeq).
Naive implementation on 2 CPUs:

program :
. . .
i f CPU == ’CPU1’ then

idx = 1 , . . , Np / 2
e l s e i f CPU == ’CPU2’ then

idx = Np / 2 + 1 , . . . ,N
end i f

BLAST( Probes [ idx ] )
. . .

program :
. . .
i dx = 1 , . . , Np / 2

BLAST( Probes [ idx ] )
. . .

program :
. . .
i dx = Np / 2 + 1 , . . . ,N

BLAST( Probes [ idx ] )
. . .

Better ways of distributing the data exists for this problem! Ex:
distribute also the RefSeq...
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Problem decomposition

split the computations into concurrent tasks

build the task-dependency graph

there is no one-size-fits-all technique

some methods: recursive decomposition, data-decomposition,
exploratory decomposition and speculative decomposition
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Recursive decomposition: example

Problem: find the minimum of a vector

proc s e r i a l _min (A, n )
min = A [ 1 ]
f o r i = 2 to n do

i f A [ i ] < min
then min = A[ i ]

end f o r
r e t u r n min

end s e r i a l _min

proc rec_min (A, i , j )
i f i == j
then min = A[ i ]
e lse

lmin = rec_min (A, i , j / 2)
rmin = rec_min (A, j / 2+1 , j )
i f lmin < rmin
then min = lmin
e lse min = rmin
end i f

end i f
r e t u r n min

end rec_min
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Data decomposition: example

Matrix multiplication: A · B = C. Write it as[
A11 A12

A21 A22

]
·

[
B11 B12

B21 B22

]
=

[
C11 C12

C21 C22

]
and distribute the four tasks:

Task 1: C11 = A11B11 + A12B21

Task 2: C12 = A11B12 + A12B22

Task 3: C21 = A21B11 + A22B21

Task 4: C22 = A21B12 + A22B22
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Other decompositions

exploratory decomposition: decompose the search space for
the solution and search for a solution in each subspace; then
choose among the solutions

speculative decomposition: launch alternative computation
branches in parallel while waiting for input for deciding which
branch to use

hybrid decompositions
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Mapping techniques

problem decomposition→ tasks

the tasks need to be allocated (mapped) to
processors/processes

objective: minimize the execution time
overheads: time spent for everything else but actually solving
the problem:

inter-process interaction - synchronization and control
time spent being idle - poor load balancing

reduce the process inter-dependencies and communication:
e.g. maximize data locality

improve load balancing

reduce blocking operations
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Implementations on multihtread/multicore machines

POSIX threads (pthreads): OS-level paralelism.
threads: lightweight processes
the same program runs on single- or multi-core machines
OS has the responsibility of mapping the threads
needs low-level programming, dedicated library

OpenMP: built on top of pthreads for SIMD-kind of parallelism
implemented through compiler directives
easier to use than pthreads
performance depends on compiler’s ’intelligence’
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OpenMP: how does it look like? (
∑

i aibi)

double a [N ] ;
double sum = 0 . 0 ;
i n t i , n , t i d ;

#pragma omp p a r a l l e l shared ( a ) p r i v a t e ( i )
{

t i d = omp_get_ thread_num ( ) ;

/ ∗ Only one of the threads do t h i s ∗ /
#pragma omp s i n g l e

{
n = omp_get_num_ threads ( ) ; p r i n t f ( "Number�of� threads�=�%d \ n " , n ) ;

}
/ ∗ I n i t i a l i z e a ∗ /

#pragma omp for
for ( i =0; i < N; i ++) {

a [ i ] = 1 . 0 ;
}

/ ∗ P a r a l l e l for loop computing the sum of a [ i ] ∗ /
#pragma omp for reduc t ion ( + :sum)

for ( i =0; i < N; i ++) {
sum = sum + ( a [ i ] ) ;

}

} / ∗ End of p a r a l l e l reg ion ∗ /
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Implementations on distributed-memory systems

MPI: Message Passing Interface
de facto standard for distributed memory programming
(clusters)
data must be manually decomposed
use special libraries
based on sending and receiving messages: data and
synchronization

PVM: Parallel Virtual Machine
previous library for cluster programming
based on message-passing principle
supplanted by MPI
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MPI: how does it look like?

#include <mpi . h>
i n t main ( i n t argc , char ∗argv [ ] )
{

i n t numprocs , myid ;

MPI_ I n i t (&argc ,&argv ) ;
MPI_Comm_ s ize (MPI_COMM_WORLD,&numprocs ) ;
MPI_Comm_ rank (MPI_COMM_WORLD,&myid ) ;

/ ∗ p r i n t out my rank and t h i s run ’ s�PE�s ize�∗ /
�� p r i n t f ( " He l lo� from�%d�of�%d \ n " ,�myid , �numprocs ) ;

��MPI_ F i n a l i z e ( ) ;
}
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Implementations in R

parallelism came as an after thought
target: massive data applications
tries to bring to R some of the libraries existing to other
languages
snow: for traditional clusters, supports PVM, MPI,...; is
portable (UNIX, Windows)
multicore: targets multi-core/-CPU machines; simple; does
not run on Windows; does not handle parallel RNGs
parallel: snow+multicore in new R (>=2.14); strange
interactions with OS
R+Hadoop: based on Hadoop cluster
RHIPE: based on Hadoop, targets map-reduce operations
Segue: apply-like calculations on Hadoop clusters, using
Amazon’s Elastic MapReduce
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Implementations in Matlab

Parallel Computing Toolbox: can use multicore, GPUs,
clusters

still evolving

parallel for-loops, special array types, parallelized numerical
routines

tries to provide a uniform interface and isolation from
underlying implementation

runs several workers (computational engines) on a multicore
machine for single program multiple data problems

the same code can be run on a cluster or grid computing
service (needs Distributed Computing Server!)
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