Bi7740: Scientific computing

Parallel computing in R

Vlad Popovici
popovici@iba.muni.cz

Institute of Biostatistics and Analyses
Masaryk University, Brno

Viad Bi7740: Scientific computing

Implementations in R packages

®© 6 6 o o

snow: for traditional clusters, supports PVM, MPI,...; is
portable (UNIX, Windows)

multicore: targets multi-core/-CPU machines; simple; does
not run on Windows; does not handle parallel RNGs

parallel: snow+multicore in new R (>=2.14)

foreach: parallel £or loops

R+Hadoop: based on Hadoop cluster

RHIPE: based on Hadoop, targets map-reduce operations

Segue: apply-like calculations on Hadoop clusters, using
Amazon’s Elastic MapReduce

better not to use GUI in the workers

Viad Bi7740: Scientific computing

Levels of parallelism in R

@ drop-in replacement of standard libraries with parallelized
versions: e.g. replace classical BLAS+LAPACK with Intel’s
MKL or AMD’s ACML to exploit multi-core machines

@ packages for parallel computing using system’s libraries for
parallelism

@ write your own custom code (e.g. C/C++/Fortran using
OpenMP interfaced with R)

@ running several R servers

Viad Bi7740: Scientific computing

parallel package

@ tries to unify snow and multicore packages

@ you can either use the master/slave architecture (for
cluster-like computing) or the multi-threaded architecture (for
shared-memory machines)

@ since R 2.14.0 is included in the basic collection of packages

@ geared towards massive data: single "instruction”, multiple
data

@ implements a special RNG for parallel streams of random
numbers (LEcuyer CMRG)

Viad Bi7740: Scientific computing

Cluster computing

communication »WORKER 1

MASTER

Viad

it is portable across different
computing environments

can use different communication
layers: sockets, MPI, PVM,
NetWorkSpaces

all but socket communication
require specific R packages

@ can work locally or on a network
@ may require proper configuration

(e.g. password-less ssh login,...)
for network access

Bi7740: Scientific computing

library (parallel)
cl = makeCluster(4, type='PSOCK")

computation goes here
res = parLapply(cl, 1:1000000, sqrt)

stopCluster(cl)

Viad Bi7740: Scientific computing

makeCluster () and stopCluster () are used for initializing
and stopping a cluster

PSOCK refers to socket transport layer - works both locally or
on a network, but data has to be sent from master to workers.
Warning: libraries and functions need to be loaded on each
worker - no environment inheritance from the master!

on Unix you can use FORK (relies on POSIX fork() system)
which is faster for local usage, but cannot be used on a
network; the workers inherit the work environment from the
master (shared memory)

in any case, the cluster is persistent and has to be explicitly
closed

Viad Bi7740: Scientific computing

Functions for distributing the work
@ cluster... (...) functions:

@ ...Call, ...EvalQ: calls the same function all all workers

o ...Apply: applies a function to each element of a list (see
also lapply (. ..)

o ...ApplyLB: load balancing version: send the first n jobs to

the n workers, and then submits jobs as the workers become
available — my increase tremendously the overhead

o ...Map: distributed version of mapply
o ...Split: splits the data into equal chunks
@ par... (...) functions:

o ...Lapply, ...Sapply, ...Apply: the parallel versions
of lapply, sapply, and apply; they have alsoa .. .LB
variant

@ ...Rapplyand ...Capply for row- and column-wise

parallel operations

Viad

Bi7740: Scientific computing

Exercise: find potentially prognostic probesets/genes.
o load the data file transbig.rdata
@ X is a gene expression matrix, probesets by columns
@ Cis a data frame with clinical covariates

o find the probesets prognostic for relapse-free survival
(cst.rfs and c$e.rfs) (do not consider other potentially
influencing variables):

o write the non-parallelized version to find the p-values (from
Cox PH models) corresponding to each probeset item find all
the probesets with adjusted p-value (FDR) < 0.2

o parallelize the code: identify the code that can be run in
parallel (same code, different data), choose a method,
implement

Viad Bi7740: Scientific computing

Support for parallel RNGs

(~]

still under development but usable

(~]

use RNGkind ("L’ Ecuyer—CMRG") to choose the right RNG

©

each worker gets a stream of 2?7 random numbers, for up to
264 workers

(]

for multicore functions: use set.seed(...) to ensure
reproducibility
for cluster usage: clusterSetRNGStream(clst, seed)

©

Viad Bi7740: Scientific computing

Example: using cluster computing for bootstrap testing

Test the mean fold change between ER+ and ER- at probeset
205225_at. Main bits of code:

RNGkind ("L’ Ecuyer-CMRG")

cl = makeCluster(4, type='PSOCK’)
clusterSetRNGStream (cl, 1234)

clusterEvalQ(cl,

{
... initialization
Y)
res = clusterEvalQ(cl,
{
... do the work
Y)
stopCluster(cl) [BA

Viad Bi7740: Scientific computing

Exercise: parallel bootstrap.

@ parallelize the function bstrap.nonparam

@ choose your favourite approach: either based on
clusterEvalQ or on parApply-family of functions

Viad Bi7740: Scientific computing

The multicore approach

@ the processes are limited to the local machine

o faster communication, shared memory — inherited
environment in the workers

@ cannot use distributed the computation to other machines

@ functions taken from multicore package and now renamed
in parallel package

o these functions are not available under Windows

@ main functions:

@ mclapply, mcmapply
@ mcparallel, mccollect

Viad Bi7740: Scientific computing

Example

Find the probesets potentially prognostic...

p = mclapply (as.data.frame (X),
my.coxph, C$t.rfs, C$e.rfs,
mc.cores=4)

Viad Bi7740: Scientific computing

foreach package

@ used for parallelizing £or loops
@ can use various backends: multicore or cluster

o examples:
foreach (i=1:10) %do% sqrt (i)
foreach (a=1:3, b=rep(10,3)) %dopar% (b"a)
@ uses iterators and combiners for splitting the data and
combining the results

Viad Bi7740: Scientific computing

Example: Find the probesets potentially prognostic...

foreach with a cluster backend
library (doParallel)

cl = makeCluster(4, type='PSOCK’)
registerDoParallel(cl)

itx = iter (X, by="column’)
pv = foreach(z=itx , .combine="c’)

%dopar’% my.coxph(z, C$t.rfs, C$e.rfs)

stopCluster(cl)

Viad Bi7740: Scientific computing

foreach with multicore backend
not on Windows!

library (doMC)

registerDoMC (4)

itx = iter (X, by='column’)

pv = foreach(z=itx, .combine="c’)
%dopar’% my.coxph(z, C$t.rfs, C$e.rfs)

Viad Bi7740: Scientific computing

A few words about MapReduce parallelism

Analogy:

S = i f(X,')
i=1

MAP: f(.)

REDUCE: +

Viad Bi7740: Scientific computing

MapReduce for parallel computing:

o
o

proposed by Google (2004)

programmers get a simple API, no need to deal with remote
execution, data distribution, load balancing, fault tolerance,
etc..

@ a scalable (both data and computation) framework

@ Apache Hadoop is an open source project implementing

Google’s specifications

@ Amazon uses Hadoop on their Elastic Cloud

o there are several packages in R that can use a Hadoop

infrastructure

Viad Bi7740: Scientific computing

MapReduce: the big picture.

- Sort and
. Create workers Partition temporary
Splitinput. ——— g map the splits . results - Eergﬁg;e to—»Reduce

Intermediate file 1:

(e, valueh—| Reduce
(key, value\ Shuffle Result 1

Intermediate filg@:
(key, value)

Split 1 Map

worker 1

Map
worker 2
Input

data (key, value;

Reduce
Shuffle worker Result 2

SolitM Intermediate}iie N
plit

(key, value)

(kvey, value)

Map
worker N

Viad Bi7740: Scientific computing

