Introduction

Parallel execution modes
Distributed data

Final remarks

Bi7740: Scientific computing

Parallel computing in MarLas

Vlad Popovici
popovici@iba.muni.cz

Institute of Biostatistics and Analyses
Masaryk University, Brno

Viad Bi7740: Scientific computing

Introduction

Parallel execution modes
Distributed data

Final remarks

Before starting

Bibliography
o J. Kepner: Parallel MarLas. SIAM 2009

o Mathworks: Parallel Computing Toolbox. User’s guide
(>R2013a)

Please download the files from IS: scl11-ex*.m, countprimes®.m.

Viad Bi7740: Scientific computing

Outline

Introduction

Parallel execution modes
Distributed data

Final remarks

@ Introduction

Vlad

Bi7740: Scientific computing

Introduction

Parallel execution modes
Distributed data

Final remarks

Introduction

@ based around the Parallel Computing Toolbox and Distributed
Computing Server

@ can exploit different backends: multicore, cluster and GPUs

@ requires commercial license - limits the number of workers

@ low level matrix computing is multi-threaded since 2007 (e.g.
LU-decomposition, etc)

o three ways to exploit parallelism:

o parfor: for-loops executed in parallel
e using spmd statement: single program multiple data
o the task feature helps creating several independent programs

@ still evolving, differences exist between 2013a, 2013b, 2014a
versions

Viad Bi7740: Scientific computing

Introduction

Parallel execution modes
Distributed data

Final remarks

Overview

@ locally: Parallel Computing
Toolbox

@ remotely: Distributed
Computing Server

@ lingo: a node the user uses
as main entry point is called
client; the other nodes are
called workers or labs

Vlad

Multicore machine
+I-GPU

Bi7740: Scientific computing

(——Computer cluster———

%
<

\

Introduction

many functions and toolboxes were recoded to use the
parallel computing infrastructure

many/most of the functions from the standard toolboxes take a
parameter opt ions where an option for parallel computing
can be set

Example: for optimization functions, you can pass
"UseParallel’ option:

opts = optimset(...., ’'UseParallel’, ’Always’);
[...] = fmincon (...., opts);

toolboxes that use parallel computing: Statistics, Optimization,
Computational Biology, Simulink, Image Processing, Signal
Processing, etc

the cluster should be used in batch mode, to avoid blocking -
the workers IBA

Viad Bi7740: Scientific computing

Introduction

Parallel execution modes
Distributed data

Final remarks

Outline

Parallel for loops = parfor
Distributed computing using batch
Single Program Multiple Data

O Parallel execution modes

Vlad

Bi7740: Scientific computing

Introduction

. Parallel for loops = parfor
Parallel execution modes B . .
Distributed computing using batch
Distributed data
Single Program Multiple Data
Final remarks

Execution modes

Model Command example | Where
interactive matlabpool local machine
indirect local batch local machine

indirect remote batch somewhere else

Viad Bi7740: Scientific computing

Introduction

Parallel execution modes
Distributed data

Final remarks

Outline

Parallel for loops = parfor
Distributed computing using batch
Single Program Multiple Data

O Parallel execution modes
@ Parallel for loops = parfor

Vlad

Bi7740: Scientific computing

Introduction

Parallel execution modes
Distributed data

Final remarks

Parallel for loops = parfor
Distributed computing using batch
Single Program Multiple Data

parfor

@ the simplest path to parallelism

@ indicates a loop whose iterations are independent and which
can be executed in parallel

o the iterations are automatically distributed to workers

@ use matlabpool command to create/destroy a set (pool) of
workers

Viad Bi7740: Scientific computing

Introduction

Parallel execution modes
Distributed data

Final remarks

Parallel for loops = parfor
Distributed computing using batch
Single Program Multiple Data

Consider computing the values of a vector (for is used for clarity,
not efficiency!):

N = 1024; N = 1024;
matlabpool open 12;

a = zeros(1, N); a = zeros(1, N);

for i = 1:N parfor i=1:N

a(i) = sin(i*2xpi/N); a(i) = sin(i=2xpi/N);

end end
% i is undefined after loop
matlabpool close;

plot(a); plot(a);

Viad Bi7740: Scientific computing

Introduction

Parallel execution modes
Distributed data

Final remarks

Types of variables

Parallel for loops = parfor
Distributed computing using batch
Single Program Multiple Data

Consider the block:

art

temporary variable
reduction variable

sliced output variable

end

Source: Mathworks

Vlad

0:

pi:

o:

rand(l,10)

or i = 1:10

a = 1; «——— loop variable

2 = z+i; sliced input variable
bii) = i

if i <= o -<—— broadcast variable
d = 2%a;

end

Bi7740: Scientific computing

Introduction
) Parallel for loops = parfor
IR i e Distributed computing using batch
Distributed data puting 9

o — Single Program Multiple Data

@ loop variable (i): assignments to the loop variable are
forbidden

Viad Bi7740: Scientific computing

Introduction

Parallel execution modes
Distributed data

Final remarks

Parallel for loops = parfor
Distributed computing using batch
Single Program Multiple Data

@ loop variable (i): assignments to the loop variable are
forbidden

@ sliced varible (o, r): a variable that can be broken down in
segments (slices) to be distributed to the workers. The
variable is indexed by [...10r..... and does not change
in shape during parfor. The index has of one of the forms
i, i+k, i-k, k+i, k—i where i is the loop variable and
is a constant.

Viad Bi7740: Scientific computing

Introduction

Parallel execution modes
Distributed data

Final remarks

Parallel for loops = parfor
Distributed computing using batch
Single Program Multiple Data

@ loop variable (i): assignments to the loop variable are
forbidden

@ sliced varible (o, r): a variable that can be broken down in
segments (slices) to be distributed to the workers. The
variable is indexed by [...10r..... and does not change
in shape during parfor. The index has of one of the forms
i, i+k, i-k, k+i, k—i where i is the loop variable and
is a constant.

@ broadcast variable (c): a variable (not loop or sliced) that is
not changed within the loop and is distributed to the workers

Viad Bi7740: Scientific computing

Introduction

Parallel execution modes
Distributed data

Final remarks

Parallel for loops = parfor
Distributed computing using batch
Single Program Multiple Data

loop variable (i): assignments to the loop variable are
forbidden

sliced varible (o, r): a variable that can be broken down in
segments (slices) to be distributed to the workers. The
variable is indexed by [...10r..... and does not change
in shape during parfor. The index has of one of the forms

i, i+k, i-k, k+i, k—i where i is the loop variable and
is a constant.

broadcast variable (c): a variable (not loop or sliced) that is
not changed within the loop and is distributed to the workers
reduction variable (z): the only exception to the independence
of the iterations. Appears in constructions like

X = X operator something

Viad Bi7740: Scientific computing

Introduction

Parallel execution modes
Distributed data

Final remarks

Parallel for loops = parfor
Distributed computing using batch
Single Program Multiple Data

loop variable (i): assignments to the loop variable are
forbidden

sliced varible (o, r): a variable that can be broken down in
segments (slices) to be distributed to the workers. The
variable is indexed by [...10r..... and does not change
in shape during parfor. The index has of one of the forms

i, i+k, i-k, k+i, k—i where i is the loop variable and
is a constant.

broadcast variable (c): a variable (not loop or sliced) that is
not changed within the loop and is distributed to the workers
reduction variable (z): the only exception to the independence
of the iterations. Appears in constructions like

X = X operator something

temporary variable (a, d): non-indexed assigned variable, but
not a reduction; cleared before each iteration

Viad Bi7740: Scientific computing

My

Introduction

Parallel execution modes
Distributed data

Final remarks

Parallel for loops = parfor
Distributed computing using batch
Single Program Multiple Data

Reduction variables

S= ey S=
parf?r i= ’Ej . S =S+ X(1) + X(2) + +
end X(H) + X(i+1) + oo X(n)s

@ a simplified map-reduce parallelism

@ the same reduction function/operator is applied at each
iteration

o for non-commutative operators (e.g. * or [...]) the reduction
variable must always appear in the same position

@ you can use an associative function: s = £ (S, expr) or
S = f(expr, S)

@ note that floating point operators are not strictly associative ol
(limited precision) IBA

Viad Bi7740: Scientific computing

Introduction

Parallel execution modes
Distributed data

Final remarks

Parallel for loops = parfor
Distributed computing using batch
Single Program Multiple Data

Example: the sieve of Eratosthenes

Find the number of prime numbers below N.

function np = countprimes(n)

function np = countprimes_p(n)

np = 0; np = 0;
for i = 2:n parfor i = 2:n
p=1; p=1
for j = 2:(i-1) for j = 2:(i-1)
if mod(i, j) ==0 if mod(i, j) ==0
p=0; p=0;
end end
end end
np =np + p; np =np + p;
end end
return return
n 100 5000 10000 30000
T 0.00414 0.60726 2.34770 20.73521
Ti2 “0.09550 0.16312 0.34941 2.45712
Speed-up 0.0434 3.7228 6.7190 8.4388

Viad Bi7740: Scientific computing

Introduction

Parallel execution modes
Distributed data

Final remarks

Parallel for loops = parfor
Distributed computing using batch
Single Program Multiple Data

@ (*) this time was obtained after repeating the task - the first
time (after creating the pool) running a parfor loop takes
longer than usual: setting up all communications

@ parallelized versions become efficient, once the overhead is
negligible in comparison with the computation

Viad Bi7740: Scientific computing

Introduction

Parallel execution modes
Distributed data

Final remarks

Local resource allocation

Parallel for loops = parfor
Distributed computing using batch
Single Program Multiple Data

ncores = 12;

Allocation of CPUs.
-
10} - - °
- o o
8 e ® o
g - - @ o
36 - o e
g - o
4 - - o
- °
o - e o
- - ® o
0

matlabpool(’open’, ’local’, ncores);

wi = zeros(1,1000);
parfor k=1:1000
w = getCurrentWorker;

wi(k) = get(w, 'Processld’)

end
matlabpool(’'close’);

Vlad

100 200 300 400 500 600 700 800 900 1000
Index

pid = unique(wi);
core = zeros(1, 1000);
for k=1:ncores

core(wi == pid(k)) = k;

end

plot(core, 'o’); title(Allocation_of_.CPUs");
xlabel(’Index’); ylabel('CPU.ID/core’)

Bi7740: Scientific computing

My

IBA

Parallel execution modes

Exercise

Parallel for loops = parfor

Implement the integral estimation by quadrature using, for

example, the midpoint rule.

@ write a function

Viad

quadint (£, n, a, b) which
estimates [" f(x)dx, by the
approximation

b n
f f~ > hi(x)
a i=1

where h = (b -a)/(n—-1) and
xi=((n-1)a+(i-1)b)/(n-1)
implement both the serial and
parallel version

Bi7740: Scientific computing

w
IBA

Introduction

Parallel execution modes
Distributed data

Final remarks

Parallel for loops = parfor
Distributed computing using batch
Single Program Multiple Data

Try

f =@(x) (sqrt(16 — x .72)/8);
tic;

quadint(f, —4, 4, 100000)

toc

for serial and parallel versions.

Viad Bi7740: Scientific computing

Introduction
. Parallel for loops = parfor
IR i e Distributed computing using batch
Distributed data puting 9

o — Single Program Multiple Data

Outline

O Parallel execution modes

@ Distributed computing using batch

Viad Bi7740: Scientific computing

Introduction

Parallel execution modes
Distributed data

Final remarks

Parallel for loops = parfor
Distributed computing using batch
Single Program Multiple Data

batch system

@ you can pass either a function or a script to be executed on a
worker

@ use several calls to batch to have more jobs run in parallel
@ to synchronize use wait () function

o to retrieve data from the worker, use load ()

o at the end, delete the job with delete ()

Viad Bi7740: Scientific computing

Introduction

Parallel execution modes
Distributed data

batch command

Final remarks

Parallel for loops = parfor
Distributed computing using batch
Single Program Multiple Data

= batch

= batch

|

= batch

(
(
(
(
(..

script’

= batch cIstObJ,

fcn, N,

., pt’

= batch(clstObj, fcn, N,

) % no '.m’ in the script name!
"script’)
{x1, ., Xn})
{x1, ..., xn})
v,)
IBA
Viad Bi7740: Scientific computing

Introduction

Parallel execution modes
Distributed data

Final remarks

General structure for batches

Parallel for loops = parfor
Distributed computing using batch
Single Program Multiple Data

% get an object describing the cluster
clst = parcluster(’local’); % default profile

% dispatch the jobs and save their IDs:
jb = batch (....)

% wait for completion:
wait (jb);

% fetch the results:
load (jb);

% or

r = fetchOutputs(jb);

Viad Bi7740: Scientific computing

Introduction
. Parallel for loops = parfor
IR i e Distributed computing using batch
Distributed data puting 9

o — Single Program Multiple Data

Integral approximation with vatcn

scll-ex05.m

Viad Bi7740: Scientific computing

Introduction

. Parallel for loops = parfor
Parallel execution modes L . .
o Distributed computing using batch
Distributed data A &
. Single Program Multiple Data
Final remarks

Outline

O Parallel execution modes

@ Single Program Multiple Data

Viad Bi7740: Scientific computing

Introduction

Parallel execution modes
Distributed data

Final remarks

Parallel for loops = parfor
Distributed computing using batch
Single Program Multiple Data

SPMD

spmd
...code block...
end

@ similar to MPI (but simpler!): one master (called client) and
several workers (sometimes called labs)

o the same code is applied to different data

@ each worker inherits master’s environment and adds his own
(versions of) variables

@ each worker knows its identifier (Labindex ()) and how many
workers exist (numlabs ())

@ synchronization points; communication via messages
o the client can inspect/alter variables on the workers fB./T

Viad Bi7740: Scientific computing

Introduction

Parallel execution modes
Distributed data

Final remarks

Parallel for loops = parfor
Distributed computing using batch
Single Program Multiple Data

Client
(master process)

v @ the code is shared between client and workers
§§§§ @ the client executes till spmd and then it pauses
smd —~~~ @ the workers execute the code between spmd and end
@ when workers reach end (for spmd) the client resumes
I execution
oo A © the workers have read-only access to client’s variables
: @ worker’s environment is preserved between spmd
- blocks

Viad Bi7740: Scientific computing

Introduction

Parallel execution modes
Distributed data

Final remarks

Parallel for loops = parfor
Distributed computing using batch
Single Program Multiple Data

(Crr|1lzgiter process) Client Worker 1 Worker 2
:gT:,Code a b c|d e f|d e f
284 = 1 T
2222 = 2; 1 2

spmd <~ spmd

d = numlabs () ; 1 2 2 2 .

e = a + labindex(); |1 2 2 2 2 3

end

c =b + e{2}; 1 2 5|2 2 2 3

d{l} = 6; 1 2 5|6 2 2 3

spmd

f =d x e; 1 2 5|6 2 122 3 6
end — end

IBA

Viad

Bi7740: Scientific computing

Introduction

. Parallel for loops = parfor
Parallel execution modes o .
Distributed computing using batch
Distributed data A N
; Single Program Multiple Data
Final remarks

Exercise

Write the code to compute the quadratic approximation of an
integral using the spmd blocks.

Idea: use the property
b N by
f= f f
L Z akg

k=1

where {[ax, bk]} is a partition of [a, b]. Divide the interval [a, b] in
subintervals [ax, bx] on which compute the previous approximation
given by quadint (£, ak, bk, n).

Viad Bi7740: Scientific computing

Introduction

Parallel execution modes
Distributed data

Final remarks

Outline

e Distributed data

Vlad

Bi7740: Scientific computing

Introduction

Parallel execution modes
Distributed data

Final remarks

Codistributed data

distributed (X);

= distributed.cell(n,...);
distributed .eye(n,...);
distributed .zeros(n,...);

o o o Qo
|

o create a distributed array and send slices to the workers
where data will reside.

for an array, the last dimension is used for distribution

(]

workers can get a local copy from another worker using
getLocalPart ()

@ the client collects data using d{i} construct

(~]

Viad Bi7740: Scientific computing

Introduction

Parallel execution modes
Distributed data

Final remarks

Codistributed data, cont'd

@ the technique allows creation of arrays that do not fit on a
single machine

@ the creation time is faster
@ avoids need of communication

o the local parts are used to speed up access to data on other
workers

@ adistributed array can be copied by the client into a local
array using gather ()

o there are many functions and operators that automatically
detect distributed data, so the code is uniform for all cases

Viad Bi7740: Scientific computing

Introduction

Parallel execution modes
Distributed data

Final remarks

Outline

e Final remarks

Viad Bi7740: Scientific computing

Introduction

Parallel execution modes
Distributed data

Final remarks

Final remarks

@ not everything is worth parallelizing - sometimes it may
degrade the performance

@ use profile to analyze your code

@ you can use pmode for interactive parallel execution of
commands. Example

pmode start ’local’ 4

pmode exit

Viad Bi7740: Scientific computing

Introduction

Parallel execution modes
Distributed data

Final remarks

Good luck with your exams!

Viad Bi7740: Scientific computing

	Introduction
	Parallel execution modes
	Parallel for loops = parfor
	Distributed computing using batch
	Single Program Multiple Data

	Distributed data
	Final remarks

