
Introduction
Parallel execution modes

Distributed data
Final remarks

Bi7740: Scientific computing
Parallel computing in Matlab

Vlad Popovici
popovici@iba.muni.cz

Institute of Biostatistics and Analyses
Masaryk University, Brno

Vlad Bi7740: Scientific computing

Introduction
Parallel execution modes

Distributed data
Final remarks

Before starting

Bibliography

J. Kepner: Parallel Matlab. SIAM 2009

Mathworks: Parallel Computing Toolbox. User’s guide
(≥R2013a)

Please download the files from IS: sc11-ex*.m, countprimes*.m.

Vlad Bi7740: Scientific computing

Introduction
Parallel execution modes

Distributed data
Final remarks

Outline

1 Introduction

2 Parallel execution modes
Parallel for loops = parfor
Distributed computing using batch
Single Program Multiple Data

3 Distributed data

4 Final remarks

Vlad Bi7740: Scientific computing

Introduction
Parallel execution modes

Distributed data
Final remarks

Introduction

based around the Parallel Computing Toolbox and Distributed
Computing Server

can exploit different backends: multicore, cluster and GPUs

requires commercial license - limits the number of workers

low level matrix computing is multi-threaded since 2007 (e.g.
LU-decomposition, etc)
three ways to exploit parallelism:

parfor: for-loops executed in parallel
using spmd statement: single program multiple data
the task feature helps creating several independent programs

still evolving, differences exist between 2013a, 2013b, 2014a
versions

Vlad Bi7740: Scientific computing

Introduction
Parallel execution modes

Distributed data
Final remarks

Overview

locally: Parallel Computing
Toolbox

remotely: Distributed
Computing Server

lingo: a node the user uses
as main entry point is called
client; the other nodes are
called workers or labs

Vlad Bi7740: Scientific computing

Introduction
Parallel execution modes

Distributed data
Final remarks

many functions and toolboxes were recoded to use the
parallel computing infrastructure

many/most of the functions from the standard toolboxes take a
parameter options where an option for parallel computing
can be set
Example: for optimization functions, you can pass
’UseParallel’ option:

opts = opt imset (. . . . , ’ UsePara l le l ’ , ’ Always ’) ;
[. . .] = fmincon (. . . . , opts) ;

toolboxes that use parallel computing: Statistics, Optimization,
Computational Biology, Simulink, Image Processing, Signal
Processing, etc

the cluster should be used in batch mode, to avoid blocking
the workers

Vlad Bi7740: Scientific computing

Introduction
Parallel execution modes

Distributed data
Final remarks

Parallel for loops = parfor
Distributed computing using batch
Single Program Multiple Data

Outline

1 Introduction

2 Parallel execution modes
Parallel for loops = parfor
Distributed computing using batch
Single Program Multiple Data

3 Distributed data

4 Final remarks

Vlad Bi7740: Scientific computing

Introduction
Parallel execution modes

Distributed data
Final remarks

Parallel for loops = parfor
Distributed computing using batch
Single Program Multiple Data

Execution modes

Model Command example Where
interactive matlabpool local machine

indirect local batch local machine
indirect remote batch somewhere else

Vlad Bi7740: Scientific computing

Introduction
Parallel execution modes

Distributed data
Final remarks

Parallel for loops = parfor
Distributed computing using batch
Single Program Multiple Data

Outline

1 Introduction

2 Parallel execution modes
Parallel for loops = parfor
Distributed computing using batch
Single Program Multiple Data

3 Distributed data

4 Final remarks

Vlad Bi7740: Scientific computing

Introduction
Parallel execution modes

Distributed data
Final remarks

Parallel for loops = parfor
Distributed computing using batch
Single Program Multiple Data

parfor

the simplest path to parallelism

indicates a loop whose iterations are independent and which
can be executed in parallel

the iterations are automatically distributed to workers

use matlabpool command to create/destroy a set (pool) of
workers

Vlad Bi7740: Scientific computing

Introduction
Parallel execution modes

Distributed data
Final remarks

Parallel for loops = parfor
Distributed computing using batch
Single Program Multiple Data

Consider computing the values of a vector (for is used for clarity,
not efficiency!):

N = 1024;

a = zeros (1 , N) ;
for i = 1 :N

a (i) = sin (i ∗2∗pi /N) ;
end

plot (a) ;

N = 1024;
mat labpool open 12;
a = zeros (1 , N) ;
p a r f o r i =1:N

a (i) = sin (i ∗2∗pi /N) ;
end
% i i s undef ined a f t e r loop
matlabpool close ;
plot (a) ;

Vlad Bi7740: Scientific computing

Introduction
Parallel execution modes

Distributed data
Final remarks

Parallel for loops = parfor
Distributed computing using batch
Single Program Multiple Data

Types of variables

Consider the block:

Source: Mathworks

Vlad Bi7740: Scientific computing

Introduction
Parallel execution modes

Distributed data
Final remarks

Parallel for loops = parfor
Distributed computing using batch
Single Program Multiple Data

loop variable (i): assignments to the loop variable are
forbidden

sliced varible (b, r): a variable that can be broken down in
segments (slices) to be distributed to the workers. The
variable is indexed by [...] or and does not change
in shape during parfor. The index has of one of the forms
i, i+k, i−k, k+i, k−i where i is the loop variable and k

is a constant.
broadcast variable (c): a variable (not loop or sliced) that is
not changed within the loop and is distributed to the workers
reduction variable (z): the only exception to the independence
of the iterations. Appears in constructions like
X = X operator something

temporary variable (a,d): non-indexed assigned variable, but
not a reduction; cleared before each iteration

Vlad Bi7740: Scientific computing

Introduction
Parallel execution modes

Distributed data
Final remarks

Parallel for loops = parfor
Distributed computing using batch
Single Program Multiple Data

loop variable (i): assignments to the loop variable are
forbidden
sliced varible (b, r): a variable that can be broken down in
segments (slices) to be distributed to the workers. The
variable is indexed by [...] or and does not change
in shape during parfor. The index has of one of the forms
i, i+k, i−k, k+i, k−i where i is the loop variable and k

is a constant.

broadcast variable (c): a variable (not loop or sliced) that is
not changed within the loop and is distributed to the workers
reduction variable (z): the only exception to the independence
of the iterations. Appears in constructions like
X = X operator something

temporary variable (a,d): non-indexed assigned variable, but
not a reduction; cleared before each iteration

Vlad Bi7740: Scientific computing

Introduction
Parallel execution modes

Distributed data
Final remarks

Parallel for loops = parfor
Distributed computing using batch
Single Program Multiple Data

loop variable (i): assignments to the loop variable are
forbidden
sliced varible (b, r): a variable that can be broken down in
segments (slices) to be distributed to the workers. The
variable is indexed by [...] or and does not change
in shape during parfor. The index has of one of the forms
i, i+k, i−k, k+i, k−i where i is the loop variable and k

is a constant.
broadcast variable (c): a variable (not loop or sliced) that is
not changed within the loop and is distributed to the workers

reduction variable (z): the only exception to the independence
of the iterations. Appears in constructions like
X = X operator something

temporary variable (a,d): non-indexed assigned variable, but
not a reduction; cleared before each iteration

Vlad Bi7740: Scientific computing

Introduction
Parallel execution modes

Distributed data
Final remarks

Parallel for loops = parfor
Distributed computing using batch
Single Program Multiple Data

loop variable (i): assignments to the loop variable are
forbidden
sliced varible (b, r): a variable that can be broken down in
segments (slices) to be distributed to the workers. The
variable is indexed by [...] or and does not change
in shape during parfor. The index has of one of the forms
i, i+k, i−k, k+i, k−i where i is the loop variable and k

is a constant.
broadcast variable (c): a variable (not loop or sliced) that is
not changed within the loop and is distributed to the workers
reduction variable (z): the only exception to the independence
of the iterations. Appears in constructions like
X = X operator something

temporary variable (a,d): non-indexed assigned variable, but
not a reduction; cleared before each iteration

Vlad Bi7740: Scientific computing

Introduction
Parallel execution modes

Distributed data
Final remarks

Parallel for loops = parfor
Distributed computing using batch
Single Program Multiple Data

loop variable (i): assignments to the loop variable are
forbidden
sliced varible (b, r): a variable that can be broken down in
segments (slices) to be distributed to the workers. The
variable is indexed by [...] or and does not change
in shape during parfor. The index has of one of the forms
i, i+k, i−k, k+i, k−i where i is the loop variable and k

is a constant.
broadcast variable (c): a variable (not loop or sliced) that is
not changed within the loop and is distributed to the workers
reduction variable (z): the only exception to the independence
of the iterations. Appears in constructions like
X = X operator something

temporary variable (a,d): non-indexed assigned variable, but
not a reduction; cleared before each iteration

Vlad Bi7740: Scientific computing

Introduction
Parallel execution modes

Distributed data
Final remarks

Parallel for loops = parfor
Distributed computing using batch
Single Program Multiple Data

Reduction variables

S = . . . ;
p a r f o r i =1:N

S = S + X(i) ;
end

S = . . . ;
S = S + X(1) + X(2) + . . . +

X(i) + X(i +1) + . . . X(n) ;

a simplified map-reduce parallelism
the same reduction function/operator is applied at each
iteration
for non-commutative operators (e.g. ∗ or [...]) the reduction
variable must always appear in the same position
you can use an associative function: S = f(S, expr) or
S = f(expr, S)

note that floating point operators are not strictly associative
(limited precision)

Vlad Bi7740: Scientific computing

Introduction
Parallel execution modes

Distributed data
Final remarks

Parallel for loops = parfor
Distributed computing using batch
Single Program Multiple Data

Example: the sieve of Eratosthenes

Find the number of prime numbers below N.

function np = countpr imes (n)
np = 0;
for i = 2 : n

p = 1;
for j = 2 : (i −1)

i f mod(i , j) == 0
p = 0;

end
end
np = np + p ;

end
return

function np = countprimes_p (n)
np = 0;
p a r f o r i = 2 : n

p = 1;
for j = 2 : (i −1)

i f mod(i , j) == 0
p = 0;

end
end
np = np + p ;

end
return

n 100 5000 10000 30000
T1 0.00414 0.60726 2.34770 20.73521
T12

∗ 0.09550 0.16312 0.34941 2.45712
Speed-up 0.0434 3.7228 6.7190 8.4388

Vlad Bi7740: Scientific computing

Introduction
Parallel execution modes

Distributed data
Final remarks

Parallel for loops = parfor
Distributed computing using batch
Single Program Multiple Data

(∗) this time was obtained after repeating the task - the first
time (after creating the pool) running a parfor loop takes
longer than usual: setting up all communications

parallelized versions become efficient, once the overhead is
negligible in comparison with the computation

Vlad Bi7740: Scientific computing

Introduction
Parallel execution modes

Distributed data
Final remarks

Parallel for loops = parfor
Distributed computing using batch
Single Program Multiple Data

Local resource allocation

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

10

12
Allocation of CPUs

Index

C
P

U
 ID

/c
or

e

ncores = 12;
mat labpool (’ open ’ , ’ l o c a l ’ , ncores) ;
wi = zeros (1 ,1000) ;
p a r f o r k=1:1000

w = getCurrentWorker ;
wi (k) = get (w, ’ ProcessId ’)

end
matlabpool (’ c lose ’) ;

p id = unique (wi) ;
core = zeros (1 , 1000) ;
for k =1: ncores

core (wi == p id (k)) = k ;
end
plot (core , ’ o ’) ; t i t l e (’ A l l o c a t i o n �of�CPUs ’) ;
xlabel (’ Index ’) ; ylabel (’CPU� ID / core ’)

Vlad Bi7740: Scientific computing

Introduction
Parallel execution modes

Distributed data
Final remarks

Parallel for loops = parfor
Distributed computing using batch
Single Program Multiple Data

Exercise

Implement the integral estimation by quadrature using, for
example, the midpoint rule.

write a function
quadint(f, n, a, b) which
estimates

∫ b
a f(x)dx, by the

approximation∫ b

a
f ≈

n∑
i=1

hf(xi)

where h = (b − a)/(n − 1) and
xi = ((n − 1)a + (i − 1)b)/(n − 1)

implement both the serial and
parallel version

Vlad Bi7740: Scientific computing

Introduction
Parallel execution modes

Distributed data
Final remarks

Parallel for loops = parfor
Distributed computing using batch
Single Program Multiple Data

Try

f = @(x) (sqrt (16 − x . ^ 2) / 8) ;

t i c ;
quad in t (f , −4, 4 , 100000)
toc

for serial and parallel versions.

Vlad Bi7740: Scientific computing

Introduction
Parallel execution modes

Distributed data
Final remarks

Parallel for loops = parfor
Distributed computing using batch
Single Program Multiple Data

Outline

1 Introduction

2 Parallel execution modes
Parallel for loops = parfor
Distributed computing using batch
Single Program Multiple Data

3 Distributed data

4 Final remarks

Vlad Bi7740: Scientific computing

Introduction
Parallel execution modes

Distributed data
Final remarks

Parallel for loops = parfor
Distributed computing using batch
Single Program Multiple Data

batch system

you can pass either a function or a script to be executed on a
worker

use several calls to batch to have more jobs run in parallel

to synchronize use wait() function

to retrieve data from the worker, use load()

at the end, delete the job with delete()

Vlad Bi7740: Scientific computing

Introduction
Parallel execution modes

Distributed data
Final remarks

Parallel for loops = parfor
Distributed computing using batch
Single Program Multiple Data

batch command

j = batch (’ s c r i p t ’) % no ’ .m’ i n the s c r i p t name !
j = batch (c l s tOb j , ’ s c r i p t ’)
j = batch (fcn , N, { x1 , . . . , xn })
j = batch (c l s tOb j , fcn , N, { x1 , . . . , xn })
j = batch (. . . , ’ p1 ’ , ’ v1 ’ , . . .)

Vlad Bi7740: Scientific computing

Introduction
Parallel execution modes

Distributed data
Final remarks

Parallel for loops = parfor
Distributed computing using batch
Single Program Multiple Data

General structure for batches

% get an ob jec t desc r ib ing the c l u s t e r
c l s t = p a r c l u s t e r (’ l o c a l ’) ; % d e f a u l t p r o f i l e
. . .
. . .

% dispatch the jobs and save t h e i r IDs :
j b = batch (. . . .)

% wai t f o r complet ion :
wai t (j b) ;

% fe tch the r e s u l t s :
load (j b) ;
% or
r = fe tchOutputs (j b) ;

% dele te jobs :
delete (j b) ;

Vlad Bi7740: Scientific computing

Introduction
Parallel execution modes

Distributed data
Final remarks

Parallel for loops = parfor
Distributed computing using batch
Single Program Multiple Data

Integral approximation with batch

sc11-ex05.m

Vlad Bi7740: Scientific computing

Introduction
Parallel execution modes

Distributed data
Final remarks

Parallel for loops = parfor
Distributed computing using batch
Single Program Multiple Data

Outline

1 Introduction

2 Parallel execution modes
Parallel for loops = parfor
Distributed computing using batch
Single Program Multiple Data

3 Distributed data

4 Final remarks

Vlad Bi7740: Scientific computing

Introduction
Parallel execution modes

Distributed data
Final remarks

Parallel for loops = parfor
Distributed computing using batch
Single Program Multiple Data

SPMD

spmd
. . . code block . . .

end

similar to MPI (but simpler!): one master (called client) and
several workers (sometimes called labs)
the same code is applied to different data
each worker inherits master’s environment and adds his own
(versions of) variables
each worker knows its identifier (labindex()) and how many
workers exist (numlabs())
synchronization points; communication via messages
the client can inspect/alter variables on the workers

Vlad Bi7740: Scientific computing

Introduction
Parallel execution modes

Distributed data
Final remarks

Parallel for loops = parfor
Distributed computing using batch
Single Program Multiple Data

the code is shared between client and workers

the client executes till spmd and then it pauses

the workers execute the code between spmd and end

when workers reach end (for spmd) the client resumes
execution

the workers have read-only access to client’s variables

worker’s environment is preserved between spmd

blocks

Vlad Bi7740: Scientific computing

Introduction
Parallel execution modes

Distributed data
Final remarks

Parallel for loops = parfor
Distributed computing using batch
Single Program Multiple Data

Client Worker 1 Worker 2
Code a b c d e f d e f
a = 1; 1
b = 2; 1 2
spmd
d = numlabs(); 1 2 . 2 . . 2 . .
e = a + labindex(); 1 2 . 2 2 . 2 3 .
end
c = b + e{2}; 1 2 5 2 2 . 2 3 .
d{1} = 6; 1 2 5 6 2 . 2 3 .
spmd
f = d ∗ e; 1 2 5 6 2 12 2 3 6
end

Vlad Bi7740: Scientific computing

Introduction
Parallel execution modes

Distributed data
Final remarks

Parallel for loops = parfor
Distributed computing using batch
Single Program Multiple Data

Exercise

Write the code to compute the quadratic approximation of an
integral using the spmd blocks.
Idea: use the property ∫ b

a
f =

N∑
k=1

∫ bk

ak

f

where {[ak , bk]} is a partition of [a, b]. Divide the interval [a, b] in
subintervals [ak , bk] on which compute the previous approximation
given by quadint(f, ak, bk, n).

Vlad Bi7740: Scientific computing

Introduction
Parallel execution modes

Distributed data
Final remarks

Outline

1 Introduction

2 Parallel execution modes
Parallel for loops = parfor
Distributed computing using batch
Single Program Multiple Data

3 Distributed data

4 Final remarks

Vlad Bi7740: Scientific computing

Introduction
Parallel execution modes

Distributed data
Final remarks

Codistributed data

d = d i s t r i b u t e d (X) ;
d = d i s t r i b u t e d . c e l l (n , . . .) ;
d = d i s t r i b u t e d . eye (n , . . .) ;
d = d i s t r i b u t e d . zeros (n , . . .) ;
. . .

create a distributed array and send slices to the workers
where data will reside.

for an array, the last dimension is used for distribution

workers can get a local copy from another worker using
getLocalPart()

the client collects data using d{i} construct

Vlad Bi7740: Scientific computing

Introduction
Parallel execution modes

Distributed data
Final remarks

Codistributed data, cont’d

the technique allows creation of arrays that do not fit on a
single machine

the creation time is faster

avoids need of communication

the local parts are used to speed up access to data on other
workers

a distributed array can be copied by the client into a local
array using gather()

there are many functions and operators that automatically
detect distributed data, so the code is uniform for all cases

Vlad Bi7740: Scientific computing

Introduction
Parallel execution modes

Distributed data
Final remarks

Outline

1 Introduction

2 Parallel execution modes
Parallel for loops = parfor
Distributed computing using batch
Single Program Multiple Data

3 Distributed data

4 Final remarks

Vlad Bi7740: Scientific computing

Introduction
Parallel execution modes

Distributed data
Final remarks

Final remarks

not everything is worth parallelizing - sometimes it may
degrade the performance

use profile to analyze your code

you can use pmode for interactive parallel execution of
commands. Example

pmode s t a r t ’ l o c a l ’ 4
. . .
pmode e x i t

Vlad Bi7740: Scientific computing

Introduction
Parallel execution modes

Distributed data
Final remarks

Good luck with your exams!

Vlad Bi7740: Scientific computing

	Introduction
	Parallel execution modes
	Parallel for loops = parfor
	Distributed computing using batch
	Single Program Multiple Data

	Distributed data
	Final remarks

