Axiální a radiální rozdělení emise čar v ICP

Pozadí rekombinačního záření Ar a jeho superpozice s molekulovým pásem

a) Axiální rozdělení emise pozadí Y II 371,030 nm v závislosti na průtoku *F_c* (l/min Ar); 1 - 0,8; 2 – 0,9; 3 – 1,1; 4 – 1,2; 5 – 1,3; 6 – 1,4; 7 – 1,6; 8 – 1,7;

b) Pozadí Gd II 335,862 nm a 336,223 nm s pásem NH 336,0 nm a kontinuem; křivka č. – h_p (mm): 1 - 28; 2 – 24; 3 – 20; 4 – 16; 5 – 12; 6 - 8; P = 1,1 kW; (l/min): F_c = 1,1; F_a = 0,4; F_p =15; 2 mg/I Gd, 1,4 M HNO₃

Optimalizační kritéria

- Signál S při jednotkové koncentrací = citlivost
- Poměr signálu k pozadí S/B, SBR
- Poměr signálu k šumu S/N, SNR
- Relativní standardní odchylka pozadí RSD_B

Přesnost (opakovatelnost) RSD_S= (S/N)⁻¹

Interference As I 228,812 nm na Cd I 228,802 nm

Korekce pozadí nezávislého na λ "flat background"

Korekce pozadí lineárně proměnného s λ "sloping background" lineární interpolací

Korekce pozadí nelineárně proměnného s λ "sloping background curved" aproximací parabolickým průběhem

Srovnání pozadí v HNO₃ a v 6% roztoku Ca

Obr. 11