Kalibrace a testování spektrometrů

Viktor Kanický

Kalibrace ICP-OES

- V ICP-OES je lineární závislost intenzity emise na koncentraci analytu v rozsahu 4 až 6 řádů.
- V analytické praxi se obvykle nevyužívá celého lineární rozsahu v rámci jedné metodiky nebo jednoho souboru vzorků.
 - Riziko kontaminace systému vzorky s vysokými obsahy analytu
 - Omezení vyplývající z použití lineární regrese
- Obyčejná metoda nejmenších čtverců vyžaduje splnění 6 podmínek, z nichž je nesplněno:
 - náhodné chyby mají konstantní a konečný rozptyl (homoskedasticita)
 Směrodatná odchylka signálu analytu ("net line intensity") je v ICP
 lineární funkcí koncentrace = nekonstantní rozptyl

Regresní modely pro kalibraci ICP-OES

- Vhodnější jsou užší kalibrační rozsahy
- Regresní diagnostika odhalí:
 - heteroskedasticitu (nekonstantnost rozptylu v kalibrovaném rozsahu)
 - autokorelaci (časové řady, vzájemná korelace chyb)
 - odchylky od normálního rozdělení chyb
- Vážená lineární regrese zohledňuje heteroskedasticitu rozptylů pomocí vah

$$w_j = \frac{1}{\sigma_j^2}$$

kde σ_i je směrodatná odchylka na příslušné koncentrační úrovni *j*.

Vážená lineární regrese

 Místo obvyklého těžiště regresní přímky získané obyčejnou lineární regresí, jehož souřadnice a jsou vypočteny jako průměrné hodnoty souřadnic experimentálních bodů, tak získáme těžiště o souřadnicích

$$\widetilde{x} = \sum_{j} w_{j} x_{j} / \sum_{j} w_{j}$$
 $\widetilde{y} = \sum_{j} w_{j} y_{j} / \sum_{j} w_{j}$

kde x_j a y_j jsou souřadnice jednotlivých experimentálních (kalibračních) bodů. Rovnice kalibrační přímky má potom tvar

$$\hat{y}_j = \tilde{y} + b(x_j - \tilde{x})$$

kde *b* regresní parametr (směrnice) a \hat{y}_j je regresní hodnota signálu pro koncentraci x_i .

- Oblast nižších koncentrací je charakterizována konstantní směrodatnou odchylkou (SD) ⇒ homoskedasticita:
 - zde je oprávněno použití obyčejné lineární regrese (ordinary least squares)
- Oblast vyšších koncentrací je charakterizována lineárním růstem SD s koncentrací (resp. signálem). Faktorem proporcionality je konstantní RSD:
 - Zde je oprávněno použití obyčejné lineární regrese po logaritmické transformaci dat, tedy v souřadnicích (*lg x; lg y*)
- Obě oblasti lze normalizovat ke koncentraci ekvivalentní pozadí (BEC), tj. dělit hodnoty koncentrací hodnotou BEC pro danou spektrální čáru určitého prvku a vyjádřit je bezrozměrnou škálou (*koncentrace / koncentrace*). Takto se rozdělení na 2 rozsahy zobecní.

 Oblast konstantní SD (SD čisté, "net line" intenzity emise analytu, tedy emise po korekci pozadí) je charakteristická pro rozsah koncentrací od meze detekce po hodnotu *BEC*, tj. pro rozsah 10⁻²×*BEC* až 10⁰×*BEC*, což představuje 2 až 2,5 řádu.

$$I_{L+B} = I_{L} + I_{B}$$
$$S_{L+B}^{2} = S_{L}^{2} + S_{B}^{2}$$

$$I_{N} = I_{L+B} - I_{B}$$

 $S_{N}^{2} = S_{L+B}^{2} + S_{B}^{2} =$
 $S_{L}^{2} + 2S_{B}^{2}$

• $s_N^2 = s_L^2 + 2s_B^2$, přičemž pro rozsah koncentrací $10^{-2} \times BEC$ až $10^0 \times BEC$ platí, že $s_L \le s_B$, takže $s_B \sqrt{2} < s_N < s_B \sqrt{3} \Rightarrow$

1,41
$$\rm s_B^{} < \rm s_N^{} <$$
1,73 $\rm s_B^{}$

a v rozsahu 10⁻²×*BEC* až 10⁰×*BEC* se s_N zvýší faktorem $\sqrt{(3/2)}$, tj. 1,225; je prakticky **konstantn**í.

- Oblast konstantní RSD čisté ("net line") intenzity emise analytu představuje rozsah 10¹×BEC až 10³×BEC, tedy opět 2 až 2,5 řádu.
- $s_N^2 = s_L^2 + 2s_B^2$, přičemž pro rozsah koncentrací $10^1 \times BEC$ až $10^3 \times BEC$ platí, že $s_L \ge s_B$, takže $s_B \sqrt{3} < s_N$;
- $s_B = RSD_B \times I_B$; $s_L = RSD_L \times I_L$; $RSD_B = RSD_L = RSD$; \Rightarrow $(I_N \times RSD_N)^2 = RSD^2 (I_L^2 + 2 I_B^2) \Rightarrow (RSD_N)^2 = RSD^2 (I_L^2 + 2 I_B^2)/I_N^2$ $I_N \cong I_L$; \Rightarrow $(RSD_N)^2 = RSD^2 (I_L^2 + 2 I_B^2)/I_L^2 = RSD^2 (1 + 2 I_B^2/I_L^2)$

$$RSD_{N} = RSD \sqrt{(1 + 2 I_{B}^{2}/I_{L}^{2})}$$

10¹×*BEC* znamená, že $I_L = 10I_B \Rightarrow RSD_N = RSD \sqrt{[1 + 2(1/10)^2]} = \sqrt{[1 + 0,02]}$ prakticky RSD_N = RSD

Rozdělení kalibrovaného rozsahu na 2 oblasti: 4 možné modely

- lineární regrese v lineárních souřadnicích v rozsahu 4 řádů, tedy pro obě odlišné oblasti současně;
- lineární regrese po logaritmické transformaci dat v souřadnicích (*lg x; lg y*) v rozsahu 4 řádů;
- 3. lineární regrese v lineárních souřadnicích pro 2 spodní řády;
- 4. lineární regrese (*lg x*; *lg y*) pro 2 horní řády.

Rozdělení kalibrovaného rozsahu na 2 oblasti: 4 možné modely

Ze srovnání experimentálních a regresních hodnot jednotlivých kalibračních bodů pro uvedené 4 modely vyplývá, že:

- vzhledem k převažujícímu vlivu čtverců odchylek signálů odpovídajících vysokým koncentracím nastává při minimalizaci obyčejnou (neváženou) lineární regresí ke zkreslení v oblasti 2 nižších řádů, což se projeví proložením regresní přímky mimo oblast bodů odpovídajících nízkým koncentracím a drastickými odchylkami regresních hodnot od správných koncentrací;
- jediná lineární regrese v souřadnicích (*lg x*; *lg y*) aplikovaná současně na obě oblasti má za následek mírné zkreslení v celém rozsahu 4 řádů;
- 3. regresní hodnoty koncentrací v oblasti 2 nižších řádů jsou při použití lineární regrese zúžené na tuto oblast ve velmi dobré shodě s výchozími koncentracemi;
- 4. po logaritmické transformaci souřadnic bodů ležících v oblasti 2 vyšších řádů poskytuje lineární regrese zúžená na tuto oblast velmi dobrou shodu regresních a zadaných hodnot koncentrací.

 Z uvedených výsledků vyplývá, že nejvhodnějším řešením je rozdělení koncentračního intervalu přesahujícího 2 až 2,5 řádu na dvě samostatné oblasti s odlišným vyhodnocením.

Nelineární kalibrace

- V ICP-OES jsou pozorovány v případě některých prvků (například Ca, Mg) a jejich čar (rezonančních) při vysokých koncentracích nelineární průběhy závislostí signálu na koncentraci (samoabsorpce).
- Pro případ, že kalibrační, resp. analytická funkce má nelineární průběh, bývají vyhodnocovací programy vybaveny algoritmy, které vycházejí z
 - aproximace křivky polygonem nebo
 - aproximace křivky **spojitou funkcí**.
- Jako příklady lze uvést tyto funkce:

Nelineární kalibrace

- polynom 2. stupně $y = A_0 + A_1 x + A_2 x^2$
- bikvadratický polynom $y = A_0 + A_1 x^n + A_2 x^{2n}$

• logaritmicko – exponenciální funkce

$$\log y = A_0 + A_1 \left[\frac{1}{1 + \exp\left[-\left(\log x - A_2\right)/B\right]} \right]$$

Rekalibrace

- Počet a rozmístění kalibračních bodů jsou dány pravidly statistiky a závisejí na požadavcích na přesnost měření.
- Na rozdíl od kalibrace, kterou provádíme s plným počtem kalibračních bodů (5-6) z důvodu určení regresních parametrů, jejch intervalů spolehlivosti a pásu spolehlivosti,
- k rekalibraci stačí jeden až dva rekalibrační body: vysoká koncentrace – "high point" HP, nízká koncentrace – "low point"LP
- případně jako spodní bod slouží nulový roztok.
- Na základě měření jednoho z rekalibračních bodů případně obou se nastavuje:
 - HP: aktuální hodnota směrnice (rotace kalibrační přímky kolem LP),
 - LP: aktuální hodnota úseku (paralelní posun kalibrační přímky)
 - nebo obou parametrů kalib. přímky (rotace a posun dle měření LP a HP).

Testování spektrometrů Mermetův test

Analytická metoda je charakterizována obecně několika analytickými vlastnostmi, které určují spolehlivost výsledků. Tyto vlastnosti jsou:

- opakovatelnost,
- reprodukovatelnost,
- správnost (pravdivost),
- stabilita,
- interference osnovy vzorku ("matrix efekty")
- selektivita signálu (míra příspěvků nedokonale rozlišených signálů pocházejících od složek vzorku k signálu sledovaného analytu)
- meze detekce.

Přístroj pro ICP-OES lze rozdělit z hlediska příspěvků ke kvalitě analytických vlastností na čtyři komponenty, v nichž se uskutečňují jednotlivé kritické procesy:

- Část zahrnující generátor s plazmovým výbojem. Tato komponenta je zodpovědná za kritický proces přenos energie.
- Část obsahující systém generování aerosolu a jeho transportní trasu do plazmatu. Tato komponenta je zodpovědná za kritický proces *zavádění vzorku.*
- 3. Část mezi zdrojem ICP a vstupní štěrbinou spektrometru. Tato komponenta určuje kritický proces *přenos záření*.
- 4. Část mezi vstupní štěrbinou spektrometru a detektorem. Tato komponenta určuje kritický proces *izolace a detekce signálu*.

Vztah mezi analytickými vlastnostmi a kritickými procesy

Analytické vlastnosti	Kritické procesy			
	Přenos energie	Zavádění vzorku	Přenos záření	Izolace signálu
Opakovatelnost	*	*		
Reprodukovatel nost	*	*	*	*
Správnost	*	*		
Stabilita	*	*	*	
Matrix efekt	*	*		
Selektivita				*
Meze detekce	*	*	*	*

- poměr intenzit emise čar,
- poměr intenzit emise pozadí,
- poměr signálu k pozadí (SBR),
- relativní standardní odchylka (RSD).

Kritické procesy ICP-OES a údaje k testování jejich stavu

Kritický proces	Testovací parametry
Přenos energie	Poměr emise iontové a atomové čáry
Přenos záření	Poměr pozadí ve viditelné a UV oblasti spektra
Zavádění vzorku	SBR a RSD vhodných čar
Izolace signálu	Pološířka čáry = šířka v polovině výšky při λ_{max} (FWHM)
ICP spektrometr jako celek	Meze detekce (LOD) testovacích prvků

Vybrané spektrální čáry pro monitorování změn v komponentách ICP-OES

Spektrální	E _{exc} (eV)	E _{ion} (eV)	E _{sum} (eV)	FVHM (pm)
čára (nm)				
Ar I 404	14,69			
Ba II 455	2,72	5,21	7,93	3,6
Ba II 233	6,01	5,21	11,22	1,5
Mg I 285	4,35			
Mg II 280	4,42	7,65	12,07	
Zn II 206	6,01	9,39	15,40	

Použití poměru intenzit spektrálních čar Mg II/Mg I pro testování v ICP-OES

Poměr intenzit emise iontové a atomové čáry vybraného prvku byl využíván již v minulosti pro studium odchylek od lokální termodynamické rovnováhy (LTE) v ICP. Z celé řady prvků se pro tento účel nejlépe osvědčil právě hořčík s využitím **atomové čáry Mg I 285 nm a iontové čáry Mg II 280 nm**, poněvadž:

- Vlnové délky obou čar jsou velmi blízké a tudíž lze při použití skenujícího monochromátoru využít skutečnosti, že spektrální citlivost fotonásobiče je prakticky stejná pro obě čáry. Uvedená skutečnost zjednodušuje formulaci kritéria pro poměr intenzit obou čar. (V případě plošného polovodičového detektoru nebo polychromátoru s fotonásobiči je třeba zohlednit rozdílnou charakteristiku detektorů pomocí koeficientu poměru citlivostí).
- 2. Intenzita emise obou čar je blízká, následkem čehož je poměr intenzit obou čar vyjádřen malým číslem (větším než jedna).
- V případě obou čar jsou známy hodnoty pravděpodobností spektrálních přechodů s přijatelnou správností pro výpočet teoretických absolutních hodnot poměrů intenzit.

Použití poměru intenzit spektrálních čar Mg II/Mg I pro testování v ICP-OES Souvislost změn poměru Mg II/Mg I a signálu analytu se změnou koncentrace matrice vzorku.

Mg II/Mg I	Signál analytu	Plazma	Mlžná komora
žádná změna	žádná změna	robustní	bez vlivu
žádná změna	změna	robustní	vliv
změna	změna	nerobustní	?

Použití poměru intenzit spektrálních čar Mg II/Mg I pro testování v ICP-OES

Teoretický výpočet poměru intenzit Mg II 280 nm / Mg I 285 nm vychází z kombinace Sahovy a Boltzmannovy rovnice a byl v literatuře mnohokrát popsán.

$$\frac{I_i}{I_a} = \left(\frac{4,83 \times 10^{21}}{n_e}\right) \left(\frac{g_i \cdot A_i \cdot \lambda_a}{g_a \cdot A_a \cdot \lambda_i}\right) T_e^{3/2} \times \exp\left(\frac{-E_{ion}}{k \cdot T_e}\right) \exp\left[\frac{-\left(E_{exc,i} - E_{exc,a}\right)}{k \cdot T_{exc}}\right]$$

kde E_{exc} je excitační energie, E_i je ionizační energie, T_{exc} je excitační teplota, T_e je ionizační teplota, g_a a g_i jsou statistické váhy daného stavu (excitovaného stavu atomu, iontu), A_a a A_i jsou přechodové pravděpodobnosti emise excitovaného atomu a excitovaného iontu, λ_a a λ_i jsou vlnové délky emise atomové a iontové čáry. Za předpokladu LTE platí, že $T_{exc} = T_e = T$. S použitím hodnot součinů $g_a \cdot A_a$ a $g_i \cdot A_i$ z tabulek, tj. 5,32×10⁸ s⁻¹ pro Mg II 280,270 nm a 14,85×10⁸ s⁻¹ pro Mg I 285,213 nm se získá vztah mezi teplotou *T*, elektronovou hustotou n_e a poměrem intenzit I/I_a . Elektronová hustota se vypočte ze Sahovy rovnice pro danou teplotu pro argon.

Použití poměru intenzit spektrálních čar Mg II/Mg I pro testování v ICP-OES

Teploty *T* (K), elektronové hustoty n_e (m⁻³) a poměry intenzit Mg II 280,2720 nm / Mg I 285,213 nm vypočtené za předpokladu *LTE*.

T (K)	n _e (m ⁻³)	I _i /I _a
6500	$1,01 \times 10^{20}$	10,8
7000	$2,83 \times 10^{20}$	11,4
7500	6,90×10 ²⁰	12,1
8000	$1,51 \times 10^{21}$	12,7
8500	3,01×10 ²¹	13,4
9000	$5,57 \times 10^{21}$	14,1
9500	9,70×10 ²¹	14,8
10000	1,60×10 ²²	15,4

Testování spektrometru měřené charakteristiky

Spektrální čára (nm)	FWHM	Emise čáry	Emise pozadí	RSD _L (čáry)	RSD _B (pozadí)
Ar I 404		*			
Ba II 455	*	*	*	*	*
Ba II 233	*	*	*	*	*
Mg I 285		*	*	*	
Mg II 280		*		*	
Zn II 206		*	*	*	*

Testování spektrometru parametry, procesy a části systému

Testovací parametr	Vlastnost (kritický	Komponenta
	proces)	
Ba II 233 nm – profil čáry	Rozlišení UV	Dispersní systém
Ba II 455 nm – profil čáry	Rozlišení Vis	Dispersní systém
Mg II 280 nm/Mg I 285 nm	Atomizace/ionizace	Generátor ICP
Bkgd 455 nm/bkgd 233 nm	Čočky/zrcadla - absorpce	Kolimátor
SBR Mg I 285 nm	Účinnost zmlžování	Zmlžování
RSD _L všech čar (krátodobě)	Opakovatelnost	Celý systém ICP- OES
RSD _L Mg I 285 nm	Reprodukovatelnost	Celý systém ICP
(dlouhodobě)		
Ba II 233 nm,	Mez detekce	Celý systém ICP
3c×RSD _B /SBR *		
Zn II 206 nm,	Mez detekce	Celý systém ICP
3c×RSD _B /SBR *		

Děkuji Vám za pozornost