Edward N. Trifonov

GENETIC CODES

"Bот посаушай. 9 у* знано: скугно не будет. А заскучаешб, зналит, поаной ти M.... и Hu ... не петриия 6 sиолотии молекуларне
(H_{3} Aлешковскии́, "Hиколаиं Hиколacbur")
"Listen. I know it's not going to be boring. And if you'll get bored, then you are f....ng fool with no idea what molecular biology is about"
(Y. Aleshkovsky, "Nikolai Nivolaevich")

My Dear Michael,
Jim Watson and I have probably made a most important discovery. We have built a model for the structure of des-oxy-ribose-nucleic-acid (read it carefully) called D.N.A. for short. You may remember that the genes of the chromosomes -- which carry the hereditary factors -- are made up of protein and D.N.A.

Our structure is very beautiful. D.N.A. can be thought of roughly as a very long chain with flat bits sticking out. The flat bits are called the "bases". The formula is rather like this.
[diagram]
:
sugar -- base
I
phosphorus
I
sugar -- base
I
phosphorus I
sugar -- base
I
phosphorus
I
sugar -- base
:
and so on.

Now we have two of these chains winding round each other -- each one is a helix -- and the chain, made up of sugar and phosphorus, is on the outside, and the bases are all on the inside. I can't draw it very well, but it looks like this

[drawing of double helix showing base pairings on inside]
The model looks much nicer than this.
Now the exciting thing is that while these are 4 different bases, we find we can only put certain pairs of them together. Thee bases have names. They are Adenine, Guanine, Thymine \& Cytosine. I will call them A, G, T and C. Now we find that the pairs we can make -- which have one base from one chain joined to one base from another - are only

A with T
and
G with C.
Now on one chain, as far as we can see, one can have the bases in any order, but if their order is fixed, then the order on the other chain is also fixed. For example, suppose the first chain goes
then the second must go
A -------------- T
T - -................ A
C ---.-. --....... G
A - T

T - A
T -..................... A

It is like a code. If you are given one set of letters

A	
T	
C	A
A	T
G	C
T	A

Now we believe that the D.N.A. is a code. That is, the order of the bases (the letters) makes one gene different from another gene (just as one page of print is different from another). You can now see how Nature makes copies of the genes. Because if the two chains unwind into two separate chains, and if each chain then makes another chain come together on it, then because A always goes with T , and G with C , we shall get two copies where we had one before.

For example

[diagram showing chains separate into two newly formed chains]

GTACTG
1
GTACTG
.........AC
】
GTACTG
CATGAC
Two identical duplexes!
GTACTG
CATGAC
个
TG
-1
CATGAC

The paper of
Rosalind Franklin and Wilkins with x-ray diffraction of A-DNA
appeared in the same issue of Nature as the paper by Watson and Crick.

Watson, Crick and Wilkins received Nobel Prize several years after Franklin died from cancer

Prehistory of the discovery

Friedrich Miescher looked for hereditary material in sperm
and discovered DNA (1869).

He thought (1882) that the genetic information may exist in the form of a molecular text, a linear sequence of chemical symbols,
"just as the words and concepts of all languages can find expression in twenty-four to thirty letters of the alphabet"

For a long time (1906-1948)
DNA was viewed
as monotonous repetition of
identical tetranucleotide units
(Steudel, 1906; Levene and Simms, 1925)

Astbury and Bell (1938)
discovered
$3.3 \AA$ periodicity in the fiber
x-ray diffraction of DNA -
-stacking of flat DNA bases

They also hypothesized that the bases
"form the long scroll on which
is written the pattern of life".

The idea on

molecular complementarity in macromolecular interactions
was outlined by
Linus Pauling and Max Delbruck
in 1940
Nature 371, 285, 1994

Transforming activity of DNA

was first demonstrated by
O. Avery, S. MacLeod and M. McCarty in 1944

Erwin Chargaff established the "Chargaff's rule"

 in 1952:$$
\mathrm{A}=\mathrm{T}, \text { and } \mathrm{G}=\mathrm{C}
$$

He was at the very doors of the discovery of DNA duplex structure.
Ruining the tetranucleotide theory, he was cautious with the obvious speculation, fearing to get in the shoes of Steudel and Levene,

... and missed the great discovery.

To the end of his days he was openly very bitter about that.

Many scientists have become "zombies":
they do not need to think about important biological problems anymore, instead, they simply go to the laboratory and use the technical facilities available to collect large quantities of data.
(Sidney Brenner)
"Now we believe that the D.N.A. is a code."

Historically, thus, the Watson-Crick DNA complementarity code, or

> DNA replication code is the first DNA code deciphered.

Although traditionally, the triplet code is considered as the first genetic code

TRIPLET CODE

Artist`s impression
"And now the announcement of Watson and Crick about DNA. This is for me the real proof of the existence of God"

Salvador Dali

GALACIDALACIDESOXIRIBUNUCLEICACID (HOMAGE TO CRICK AND WATSON)

ค•1 ...

Sequences (introductory)

```
tgccattgcg ctccaaaaaa aaaaaaaaa aagacattaa cataaattta aatattttat 2580
aatgacaatc cacattaact acttaaagca taagctattt tccaggagag gcagcaagtg 2640
cattctactc ccatgcccaa gaagaaagga gcgtgacttt ggtgggagta ctaggagttt 2700
ctactggagc acttgcccgc agagtgagaa acgttcctag agaggaagtt atacctgctg 2760
tggaatttaa gagaatcttg tcatattttg acaagttttt tgagatggaa gtctcactct 2820
gtcgcccagg ctggagtgca gtggcgcaat ctcagctcac tgcagcctgc acctcctcgg 2880
ctccagctat tctcttgtct cagcctcctg agtaactggg attacaggcg cccgccacta 2940
cgcctggcta atttttgtat ttttagtaga aatggggttt taccatgttg gccagactgg 3000
tctcaaactc ccgacctcag gtgatctgcc tgcctcagcc tcccaaagtg ctggaattac 3060
aggcgtgtgc cactgcgcct ggctaatttt tttttttttt tttttttagt agagacggtg 3120
gtttcaccat gtcatccagg ctggtctcaa actcctgacc tcaggtgatc cacccacctt 3180
ggtctaccaa agtgctcgga ttacaggcat gagccaccag gcccagtcaa cgtgatgtgt 3240
tttggaaccc tgaattcctt ggcttgcccg gagggttttc tttttgttaa tatctttgct 3300
tgctttctag tatttaaaaa attgtgtttt gctctaacta tgcaatggct ttaagtctta 3360
```

Sequence fragment from rDNA spacer of Arabidopsis thaliana

MSVNYMRLLCLMACCFSVCLAYRPSGNSYRSGGYGEYIKPVETAEAQAAALTNAAGAAASS AKLDGADWYALNRYGWEQGKPLLVKPYGPLDNLYAAALPPRAFVAEIDPVFKRNSYGGAYG ERTVTLNTGSKLAVSAAIGREAIVGAGLQGPFGGPWPYDALSPFDMPYGPALPAMSCGAGS FGPSSGFAPAAAYGGGLAVTSSSPISPTGLSVTSENTIEGVVAVTGQLPFLGAVVTDGIFP TVGAGDVWYGCGDGAVGIVAETPFASTSVNPAMSKSGVPRLLTASERERLEPIDQIHYSPR ADDEYEYRHMLPKAMLKAIPTDYFNPETGTLRILQEEEWRGLGITQSGWEMYEVHVPEPHI LLFKREKDYQMKFSQQRGGMLLNRTSFVTLFAAGMLVSALAQAHPKLVSSTPAEGSEGAAP AKIELHFSENLVTQFSGAKLVMTAMPGMEHSPMAVKAAVSGGGDPKTMVITPASPLTAGTY KVDWRAVSSDTHPITGSVTFKVKMSSQQQKQPCTLPPQLQQHQVKQPCQPPPQEPCVPKTK EPCQPKVPEPCQPKVPEPCQPKVPEPCQPKVPQPCQPKVPEPCQPKVPEPCQPKVPEPCQP KVPEPCQSKVPQPCQPKVPEPCQTKQKMADNLSQSFDKSAMTEEERRHIKKEIRKQIVAFA LMIFLTLMSFMAVATDVIPRSFAIPFIFILAVIQFALQLFFFMHMKDKDHGWANAFMISGI FITVPIAALMLLLGVNKISKIVKFLKELATPSHSMEFFHKPASNSLLASELNFVRRNIKRE DFGHEVLTGAFGTLKSPVIVSIFHSRIVACEGGDGEEHDILFHTVAEKKPTICLDGQVFKL KHISSEGEVMYYMFRQCAKRYASSLPPNALKPAFGPPDKVAAQKFKESLMATEKHAKDTSN MWVKISVWVALPAIALTAVNTYFVEKEHAEHREHLKHVPDSEWPRDYEFMNIRSKPFFWGD GDKTLFWNPVVNRHIEHDDQSTVHIVGDNTGWSVPSSPNFYSQWAAGKTFRVGDSLQFNFP ANAHNVHEMETKQSFDACNFVNSDNDVERTSPVIERLDELGMHYFVCTVGTHCSNGQKLSI NVVAANATVSMPPPSSSPPSSVMPPPVMPPPSPS

PROKARYOTIC GENOME

```
1-2 CIRCULAR CHROMOSOMES 400 kbp-4000 k.bp
PLASMIDS, 1-5O COPIES/CELL
    1kBp-100kbp
```


[^0]
EUKARYOTIC GENOME

```
4-200 CHROMOSOMES 500 000 kbp - 5000 000 kbp
MITOCHONDRIA, CHLOROPLASTS
EXTRACHROMOSOMAL CIRCULAR DNA
10 kbp - 200 kbp
    1kbp-20kbp
```


INTRONS \& INTERGENIC SEQ-S:


```
EXONS, ZRNA GENES ; iRNA 1-10%
TRANSPOSONS & REPEATS: 20-40%
INTRONS & UNASSIGNED SEQ-S: 50-70%
```

Viral genome
$1 \div 20$ DNA OR RNA SEGMENTS ("CHROMOSOMES") 0.2 - 200 kb)

CODING REGIONS: $\sim 80 \%$
$\sqrt{6}$
"What is true for E . coli is also true for the elephant"

(Jacque Monod)

Jacque Monod died in 1976
Gene splicing was discovered in 1977

然矩复年
PROTEIN

BACTERIA

GENE

PROTEIN

ANIMALS, PLANTS

PROTEIN

The sequences carry endless surprizes (and new codes to be discovered)

Definition of the sequence code:

Any sequence pattern or bias responsible for specific biological or biomolecular function
(ENT, 1989)

There are, thus, many codes

Definition of language code:

A rule that transforms one sequence of symbols (letters, often meaningless) into another one, with a meaning

Any bilingual dictionary serves as a code, to translate a text written in one language to text in different language

The spy code (secret dictionary) is another example

From Mexican military code "Temascaltepec", 1907

The course GENETIC CODES has been given by ENT in 15 Universities of 8 countries, since 1981

```
    1981-2000 The Weizmann Institute of Science, Israel
    1987 University of North Carolina, Chapel Hill, USA
        1988 University of Wuerzburg, Germany
    1989 Research Computer Center, Pushchino, Russia
        1990 Yale University, New Haven, USA
1990 Pauling Inst. of Science and Medicine, Palo Alto
1992, 95, 97 Bar-Ilan University (Tel-Aviv, Israel).
        1993, 95 University of San Francisco, USA
        1999 Lomonosov Moscow State University, Russia
        2000 University Paris Sud, Orsay, France
                        2000 Murdoch University, Australia
                        2002-2012 University of Haifa
        2005, 2009 University of Rome "Sapienza", Italy
        2007-2014 Masaryk University, Brno, Czech Republic
    and yet, the community of molecular biologists
    still lives with concept of single genetic code,
repeatedly bumping into yet another "second genetic code"
```

Trifonov, E. N.,
Structure of DNA in chromatin.
In: "International Cell Biology 1980-1981" (Ed. H. Schweiger),
Springer-Verlag, Berlin, 1981, pp. 128-138.

- Second code of chromatin DNA

Trifonov, E. N., The multiple codes of nucleotide sequences. Bull. Math. Biol. 51, 417-432 (1989)

Trifonov, E. N.,
Sequence codes.
In: "Encyclopedia of Molecular Biology",
T. E. Creighton, Ed., John Wiley \& Sons, Inc., New York, 1999, p. 2324-2326

Linguistics of genetic sequences

 (introductory)
One finds in human texts

A variety of hidden meanings (codes) -
rythms,
rhymes, acrostichs,
repeats,
palindromes, symmetries, etc.

Aus der Harzreise, 1824, Heinrich Heine.

Auf die Berge
Will ich steigen,

Wo die dunkeln
Tannen ragen,

Bäche rauschen,
Vögel singen,

Und die stolzen
Wolken jagen.

Acrostic of Guido d'Arezzo (1025)

(on the hymn to St. John the Baptist)

Do (Ut in France) Ut queant laxis

Re

Mi

Fa

Sol

La

Resonare fibris
(vocal chords)
Mira gestorum

Famuli tuorum

Solve polluti

Labii reatum
(tight lips)

```
Russian physicist Yakov Zeldovich,
being in quarrel with Arkady Migdal,
published the following achrostic:
(Uspekhi Fizicheskikh Nauk, 1976)
И
```

МогУчий МИГДАЛ ТЫ ИОПА Almighty

Громадный
Далёк
Астральный
Лад.
ТЫ
Ищешь
Объясненья -
Познай
Атомосклад
(Migdal you asshole) And
Huge,
Remote is
Celestial
Tune.
YOU
Look for
Explanation -
Cognize the
Star depot

NOW NO SWIMS ON MON

NOW NO SWIMS ON MON

- sign of dyad symmetry

G G A T C C

Bam H1 restriction site

When placed in one sequence

....GGATCCxxxxxxxxxxxGGATTC....
the Bam H 1 sites will make a hairpin with xxxxxxxxxx in a loop

The best for a loop is mirror-symmetrical sequence, e.g.

GGATCC CCTAGG

It can not possibly make a hairpin

Such mirror-symmertrical sequences (texts, words) are called palindromes, e.g.

AMORE ROMA

НАЖАЛ КАБАН НА БАКЛАЖАН

GOD DAMN I AM A MAIN MAD DOG (v. Ivanov)

S A T O R Founder
 A R E P O Crawl
 T E N E T Hold
 O P E R A Effort
 R O T A S Wheel

Two-dimensional palindrome discovered under ashes in Pompei

AB R A CA DA BR A
AB RA CA DA BR
AB RA CA DA B
AB RA CA D A
AB RA CA D
A BR A CA
AB RA C
A BR A
A BR
Amulet against malaria
A B
A

The same string may carry another message, read in different way:

DORMITORY

MOTHER IN LAW

TWELVE + ONE

DIRTY ROOM

WOMAN HITLER
ELEVEN + TWO

Various sequence types may be characterized
by so-called contrast words -
the words that expand uniquely
from inside of the word,
but continue randomly outside

RAT
OPERATOR OPERA TALENTS car at the gates
SEIZURE

$$
\begin{gathered}
\text { Multiple } \\
\text { overlapping } \\
\text { codes }
\end{gathered}
$$

in the biological sequences

```
MnnnnnMnnnMMnnnnMnnMMMnnnMMnnnnnMnnMnnnnn No.1
```



```
nnnnMnMnnnnnnMnnMnnnMMnMnnMnnnMnnnMnnnMnn No.2
```

The sequences between genes (intergenic sequences), and those between exons (intervening sequences) are called "non-coding sequences", that is non-coding for proteins.

They, actually, carry an unknown number of other (mostly unknown) codes, not related to proteins

Those people who don't like anything unknown call the sequences various names with different degrees of disdain:

Garbage,
Junk (S. Ohno),
Selfish DNA (F. Crick),
Polite DNA (E. Zuckerkandl)
One should not consider a book garbage only because one does not know the language

Sidney Brenner:

The non-coding sequences could not have been called "garbage" instead of "junk", since the garbage is to throw away while the junk is to carry with.

Trifonov, E. N.,
Structure of DNA in chromatin.
In: "International Cell Biology 1980-1981" (Ed.
H. Schweiger),

Springer-Verlag, Berlin, 1981, pp. 128-138.

Second code of chromatin DNA

[second!] Second Genetic Code Deciphered

The New Hork Times May 13, 1988

reported in today's issue of nature,
by Ya-Ming Hou and Paul Schimmel
(aa tRNA synthase/tRNA recognition)
1988

DNA methylation, DNA's [third !]Second Code,

It is often featured as such in literature since 2001.
It was used first under this name by Orion Genomics Company in 2001, after publication: Martindale, Diane; "Genes Are Not Enough,"
Scientific American, 285:22, October 2001; and is broadly accepted since then.
See, e. g.:
Crack the Second Code: Methylated DNA Sequencing for Epigenetic Analysis ETON Bioscience Inc 2003;

Imprinted Genes Offer Key to Some Diseases and to Possible Cures. By Sharon Begley, Wall Street Journal. 24 June 2005.

2nd genetic code could provide clues to schizophrenia, bipolar disorder March 12, 2008, CBCNews

$$
2001
$$

Packaging proteins may be
[fourth!] second genetic code

NewScientist 09 August 2001 by Emma Young

(T. Jenuwein \& C. D. Allis, histone modifications, Science (vol 293, from p 1068)

2001

I^{\prime} m done with seconds, can I have a third?

As an aside, the authors of the editorial summary coined the work as the second genetic code. I find this amusing, because this would be the third second genetic code.
The aminoacyl tRNA code was also coined the second genetic code, but people must have forgotten that, because another second genetic code was proposed in 2001. This genetic code describes how methylated DNA sequences regulate chromatin structure and gene regulation.
(Todd Smith , FINCHTALK Journal Club, May 11, 2010)

Cracking the [fifth !] Second Genetic Code: Sequence Patterns in Noncoding DNA

Jeff Elhai

(intragenomic recombination sites in Nostoc)
Virginia Commonwealth University BBSI Symposium 1, 2003

Genome`s [sixth!] second code
 Allende ML et al., Methods 39, 212, 2006

(highly conserved enhancers across species)

2006

A genomic code for nucleosome positioning

Eran Segal, Yvonne Fondufe-Mittendorf, Lingyi Chen, AnnChristine Thastrom,

Yair Field, Irene K. Moore, Ji-Ping Z. Wang \& Jonathan Widom
nature 442, 772-778, 2006

"a /seventh !/second code in DNA in addition to the genetic code"
 Che New Iork eimes July 25, 2006

2006

The tendency of the dinucleotides to fit to ... $\mathbf{1 0 . 5}$ or so base frame ... can be considered as another message... two codes ...

Trifonov, Nucl. Acids Res. 1980
"Second code of chromatin DNA" chapter by Trifonov in
"International Cell Biology 1980-1981"

Zuckerkandl, J Mol Evol 1977

Holliday R, Science 1987

If I am able to generate just one good idea let it be stolen

Fritz Pohl, codiscoverer of left-handed DNA, (from personal conversation)

"Cracking the [eighth !] Second Genetic Code"

T.R. Hughes et al., $21^{\text {st }}$ Intl Mammalian Genome Conference, 2007, abstract:
"relationship between transcription factors and cis-regulatory elements has been termed the second genetic code",
also
Tim Hughes, The FASEB Journal. 2008;22:262.2
"protein structure prediction" is a long-last difficult problem called "cracking the [ninth !] second genetic code"

In:
Quantum bio-informatics: from quantum information to bio-informatics Eds: L. Accardi,W. Freudenberg,Masanori Ohya, World Scientific, 2008 (p. 441)

2008

Two previously declared second genetic codes - DNA methylation (2001) and histone modification (2001) are combined now in one:

Epigenetics:

The [tenth !]Second Genetic Code
(N. M. Springer and S. M. Kaeppler. Advances in Agronomy 100, 59-80, 2008)

Deciphering the splicing code

Yoseph Barash, John A. Calarco, Weijun Gao, Qun Pan, Xinchen Wang, Ofer Shai, Benjamin J. Blencowe \& Brendan J. Frey

Breaking the [eleventh !] second genetic code

J. Ramón Tejedor and Juan Valcárcel
nature, May 6, 2010

2010

Duons: Researchers Find [twelfth! ! Second Code Hiding within DNA

Dec 13, 2013 by Sci-News.com, about paper in Science (2013: Vol. 342 no. 6164 pp. 1367-1372, by A.B. Stergachis, ..., J.A. Stamatoyannopoulos), on overlapping of factor binding sites with protein-coding sequences

2013

twelve SECOND CODES:

three in nature,
two in Science,
one in Scientific American,
one in The FASEB Journal
five in other sources

Chronology of 12 Second Genetic Codes

1981 •
1988 •
2001 ••
2003 •
2006 ••
2007 •
2008 ••
2010 •
2013 •

The truth is that there are MANY codes in the sequences:

```
discovered cracked
    1. DNA replication code (Watson/Crick)
2. RNA-protein translation (triplet) code
3. Genomic code (isochores)
    4. Chromatin (nucleosome positioning) code
5. DNA shape code (curved DNA)
6. Gene splicing code (Chambon rules)
7. N-end rule (protein lifetime)
8. Translation framing code
9. Fast adaptation (modulation) code
10. Genome segmentation code
11. Codes of small RNAs
12. Translation pausing code
13. Proteomic code (proteins)
14. Genome inflation code
\begin{tabular}{ll} 
discovered & cracked \\
\((1953)\) & \((1953)\) \\
\((1961)\) & \((1961)\) \\
\((1973)\) & \((1973-1990)\) \\
\((1980,1981)\) & \((1980-2009)\) \\
\((1980,1981)\) & \((1980-1996)\) \\
\((1981)\) & not yet \\
\((1986)\) & \((1986-1996)\) \\
\((1987)\) & \((1987)\) \\
\((1989)\) & \((1989)\) \\
\((1994)\) & not yet \\
\((1998)\) & \((1998)\) \\
\((2002)\) & \((2002)\) \\
\((2003)\) & \((2010)\) \\
\((2010)\) &
\end{tabular}
```

```
Several more sequence patterns are known, that qualify as general codes:
```

Several more sequence patterns are known, that qualify as general codes:
Transcription initiation code (promoters)
Transcription initiation code (promoters)
Transcription termination code (terminators)
Transcription termination code (terminators)
Poly-adenylation code

```
    Poly-adenylation code
```

And this is common knowledge, essentially, since 1989:
Trifonov, E. N., Bull. Math. Biol. 51, 417-432 (1989)
Trifonov, E. N., Sequence codes. In: "Encyclopedia of Molecular Biology", 1999

Those many codes do not have to be called all as "Second genetic codes".

Also, there is no need to number them

Triplet code

(RNA-protein translation code)

TRIPLET CODE

Note to degeneracy of triplet code

Original sequence: Sequence I: Sequence II: Sequence III:

TACTCGCTAACCGTAGGGGCCCGG

It turned out that the third position sequence is the most deviant from random)
(Sasha Rapoport, 2008)

OUT-OF-CONTEXT SEQUENCES I, II and III

original seq. ACCGCUAUACAGAUGUGUCAUACCGCCCAUGACGGCACUUGCAAUGCACGUUUA

I	AGACAUCAGCGGAUAGCU
II	CCUAUGACCAAGCGACGU
III	CUAGGUUCCUCCUCUAUA

$$
\text { A. Rapoport, } 2008
$$


```
<6:
```



```
\(G \quad \Xi\)
5 G
\(\%\)
2) Iraming of frde
5535
I \(\boldsymbol{\lambda} \boldsymbol{i} \boldsymbol{i}\)
) gromotef 户!
```



```
(c)
```


Translation framing code
...GCCAGCAGCCTAGCAGECAGTCAGCTTGCC GCCGGCGGCCAA GCAGCC AACCATGCTCAACTTC GGTGCCTCTCTCCAGCAGACTGCG.....TCGAAGTGGACTGCTGGTGGAAAA TGA GGAAATTCAA

Atkins JF, Elseviers D, Gorini L,
Low activity of beta-galactosidase in frameshift mutants of Escherichia coli. PNAS 69, 1192-1195, 1972

Despite various measures to exclude contamination by wild type strain the effect persisted.

All arguments discussed in the paper seem to "invalidate any hypothesis attempting to explain frameshift leakiness by postulation of a ribosomal slippage along the message"

But, as it turned out, the leakiness was caused, indeed, by the ribosomal slippage

Distribution of bases in three codon positions

Figure 1. Distribution of guanines along E.coli mRNA. Filled bars, first positions of the codons; hatched bars, second positions. Only the first and last 60 bases of the coding regions are presented.

The three-base periodicity suggests that the ribosome may recognize correct reading frame far away from initiation triplet AUG.

Why that would be needed?
Does ribosome always move by exactly three steps?
It does not!

Occasionally, ribosome makes mistakenly two base steps instead, or 4 base steps.

That is, the ribosome may spoil the reading frame, and synthesize protein with wrong sequence, starting from the site of the mistake.

Frameshift mutation, and translational frameshifting are different phenomena.

First is a mishap caused by insertion/deletion (gene sequence changed)

Second is a mishap (or happy accident) caused by failure of the ribosome to correctly count triplets
(no change in the gene sequence)
(a)

(b)

Figure 3. Actual distribution of guanines in 3 frames of the $R F-2$ gene of E. coli (a) and the $10 A, B$ gene of bacteriophage T7 (b). The sequence around the ribosome slippage site is also shown (a). Every occurrence of G is indicated by a dot. Arrowheads indicate positions of ribosome frameshifting. Sequence co-ordinates correspond to those in original papers (Craigen et al., 1985; Dunn \& Studier, 1983).

Potential mRNA binding sites in 16 S rRNA

$(\mathrm{NNC})_{n}$ sites	$\begin{gathered} \text { Stickiness } \\ \text { to } E \text {. coli } \\ (\mathrm{GNN})_{n} \mathrm{mRNA} \end{gathered}$	Exposed loops
	1-19	$+$
(517)ge Caghage	1.17	+
	1.15	
	$1 \cdot 13$	
(106I)guter ${ }^{\text {agr }}$?	1-13	
(S0) 3) gu(eacare	$1 \cdot 11$	
	I-1 I	
	1-10	
(5-4)	0-97	
	$0 \cdot 96$	$+$
(891) uat 'rart 'rat ${ }^{\text {c }}$	$0 \cdot 9$.	
	(6.85)	
	()-85	
(1-357)agr cratiou((1).80)	
(730) girctagetee	$0 \cdot 73$	
	(1) $5 \cdot 3$	
	1) -14	

m RNA binding sites in $16 \mathrm{~S} r$ RNA

$(517) \mathrm{C}$ C A G A G C C G G GUA A $\mathrm{C}(534)$

mRNA consensus

$(\mathrm{GHN})_{\mathrm{n}}$ - obvious pattern (1987)
$(\mathrm{GHU})_{\mathrm{n}}$ - normalized base distributions
$(G C U)_{n}$ - dinucleotide preferences
$(\mathrm{GCU})_{\mathrm{n}}$ - avoidance of bad mismatches
$(\mathrm{GCU})_{\mathrm{n}}$
$5^{\prime}-U$ GCU GCU GCU GCU G mRNA consensus
$3^{\prime}-A$ UGG CGC CGA CGA C 525 site of $16 S$ rRNA (proof-reading site)

Figure 4. Scheme of the translation frame-monitoring mechanism.

ENT, 1987

$$
\begin{aligned}
& \text { 5'-G mRNA motif } \\
& \text { C C } \\
& ||||||||||||\mid \\
& \text { AUGGCGCCGACGAC } \\
& \text { A } \\
& 3^{\prime}-\mathrm{U} \\
& 0 \mathrm{C} \\
& 525 \text { site }
\end{aligned}
$$

Which one is more ancient?

TRANSLATION FRAMING CODE

$$
\begin{aligned}
& (G \subset U)_{n}-m R N A{ }^{\prime} \text { CONSENSUS" } \\
& \text { (J. Lagunez-otero, } \\
& \text { E.Trifonor) } \\
& 1992
\end{aligned}
$$

THE IN-FRAME COMPLEMENTARITY PREVENTS RIBOSOME SHIFTING TO WRONG FRAME THIS IS IMPORTANT FOR LARGE PROTEINS

Translation pausing code

TRANSLATION PAUSING CODE

CLUSTERS OF RARE CODONS

Genomic code (isochores)

Isochores

Transcription factor binding sites
in $\mathrm{G}+\mathrm{C}$ rich isochores are $\mathrm{G}+\mathrm{C}$ rich as well

This results in different usage of transcription factors in different isochores

In other words, each isochore type in the genome is under isochore-specific separate regulatory system

In that sense isochores appear as individual mini-genomes within the genomes

Apparently, modern eukaryotic genomes are mosaics of many fused small ancestral genomes

DNA SHAPE CODE (CURVED DNA)

S. Tan, Pennsylvania State University, USA

Since 1974 the experimental evidence started to accumulate suggesting that

1. Nucleosomes prefer some specific sequences
2. Comparisons of the sequences do not show anything in common
3. Often there are several alternative nucleosome positions on the same sequence
4. The alternative positions are separated by $10-11$ bases

Increments of 10-11 bases

Separation of the nucleosome positions by 10-11 bases
(one structural period of DNA helix)
means that
The DNA molecule binds to histone octamers by one side

Physically, there are two ways to make DNA sided:

1. DNA may have the curvilinear shape, with arc-like axis Curved DNA
2. DNA (straight DNA) could be easier bent in certain direction Bent DNA

One is arc-like because it has that shape (like banana)

- no force applied (curved DNA)

Another one is arc-like because the bending force is applied to it (bent DNA)

There is a wide-spread confusion on the name of the DNA that has curvilinear shape

Original name (Trifonov, 1980) was CURVED DNA.

But soon instead another name was introduced by Crothers (1982): BENT DNA

It was accepted by English speaking community since both "curved" and "bent" are passive terms in English, contrary to other languages, and "bent" is more frequently used

Object of arc-like shape is called

Krzywy domek (Curved house), Sopot, Poland

From Google :

"Curved DNA" is used $\sim 40 \%$
"Bent DNA" is used $\sim 60 \%$

As Mendel said once:
"My time will yet come"
("Nash chas eshche pride" in Czech)

One innocent way to "hijack" somebody`s idea is to describe the same idea by using different terms.

Before historians of science will establish true priority, the hijacker will enjoy credit for "his" idea.

And he is not to blame. After all, he just suggested to call the thing differently.

CURVATURE and BENDABILITY Curved DNA Bent DNA (force applied)
 DIFFERENT THINGS

Strongest nucleosome motif: GAAAATTTTC Strongest curvature motifs: AAAAATGACT and AAAAACGCGA

Twist (Ω)

Roll (ρ).

Tilt (τ)

Rise (Dz)

Inclination (η)

Tip (θ)
$B P$ to $A X I S$

Opening (σ)

Propeller twist (ω)

Buckle (κ)

Stagger (Sz)

Slide (Dy)

Shift (Dx)

y displocement (dy)

x clisplocement (dx)

Stretch (Sy)
E. N.TRIFONOV

Figure 2. Wedge components of curved DNA (scheme). (wo interwound stands oi double helical DNA molecule are presented by their sinusoidal projections. Only those base-pairs are shown which are non-parallel making the coresponding angles in their in-plane projections (From Ulanovsky and Trionov, 1987, with permission).

Prediction:

If the static DNA curvature is good for the nucleosomes, some sequence elements (dinucleotides)
would have tendency to be at one or more period distances from one another

Checking the prediction:
List all distances between the same type dinucleotides and see whether they like to be at $\sim 10,20,30, \ldots$ bases one from another.

This is called distance analysis, or positional autocorrelation analysis
aacaagctaagtaccgtactgaagcgcattttaattacgataaggcttatcttaatttcgccgatggcaatgaatgacgtaagcttac

$\begin{array}{llllll}0 & 10 & 20 & 30 & 40 & 50\end{array}$
aacgaacgatccgcaattaagtcgcgtctggtgcaagggtacttaacagattggaagtaaccgtaactgtcaggaacgtaaggtccat


```
0 10 20 30 50
```


The signal thus detected was so small (~ 3.5 STD), that many questioned this result,
until much stronger oscillation
has been discovered in Saccharomyces cerevisiae

Yeast
Cohanim 2005

One way to experimentally observe DNA curvature is to watch DNA moving in gel electrophoresis

DNA moves head-on through the narrow pores of the polyacrylamide gel - reptation

The curvature is an obstacle, since the curved molecule keeps deflecting from the along field direction, and it has to be made straight (force applied) to get through

A

B
C
D
E
F
tcccAAAAAtgtcAAAAAAtaggcAAAAAA tgccAAAAA tccc
gtatAAAAAAgctgAAcgagAAAcgtAAAAtgatatAAAtatc gatcgAAAAcAAAAAAtgctttAAAtagcattttAAAAcata
acacAAAAAActcatgAAAAtggtgctggAAAAcccattcAAggt
cctcAAAAcgagggAAAAtcccctAAAAcgagggatAAAAcatccctcAAAttgg
tgccAAttcatccattAActtctcagtAAcagatacAAActcatcacgAAcgtc

kDNA
attP
Ch. thummi th.
SV40 Hind F
ORI lambda
ORI Phixl74 (Hind R3)

TCTCTAAAAAATATATAAAAA.

Griffith et al. Cell 46, 717-724 (1986)

JUNCTION MODEL
 of Don Crothers

Fig. 2 Gel electrophoretic behaviours of duplex polymers having a repeating decamer motif. $\mathrm{CA}_{4},\left[\mathrm{CA}_{4} \mathrm{~T}_{4} \mathrm{G}\right]_{\mathrm{N}} ; \mathrm{GA}_{4},\left[\mathrm{GA}_{4} \mathrm{~T}_{4} \mathrm{C}\right]_{N}$; $\mathrm{GT}_{4},\left[\mathrm{GT}_{4} \mathrm{~A}_{4} C\right]_{N} ; \mathrm{CT}_{4},\left[\mathrm{CT}_{4} \mathrm{~A}_{4} G\right]_{N^{2}}$ Mobilities of the various polymers, represented as the ratio of the apparent number of base pairs ($\mathrm{BP}_{\mathrm{app}}$) to the true number of base pairs ($\mathrm{BP}_{\text {seq }}$), are plotted as a function of the degree of polymerization, N. The two curves plotted with solid circles represent sequence inversions of one another; the same applies to the two curves with open circles. \bullet, $\left[G_{3} \mathrm{TCGAC}_{3}\right]_{N}$ (lane b of Fig. 1, displaying a normal electrophoretic pattern for a decamer-based series).

In the experiments of Hagerman he discovered that repeating GAAAATTTTC behaves in the gel like curved DNA (slow migration)

While repeating GTTTTAAAAC behaves like straight DNA.

He concluded that since these are two identical wedges, AAAA and TTTT, their net influence on DNA curvature should be the same in two cases, like summing two weights (scalar summation). Hence - the wedge model is wrong.

But the wedges are not scalars!

AA to TT distance
6 bases (~214)

Fig. 1 Tilt and roll angles. a, Twist, tilt and roll angles formed by two adjacent base pairs. b, Curvature by roll components of the wedges, opening towards the major groove. c, Curvature by tilt components of the wedges, opening towards the backbone: Note that b and c show mutually perpendicular projections of the Note that b and c show mutually perpendicelges separated by one same DNA fragment containing three wedges separe the cation 10 bp) thus causing unidirectional curvature of DNA. Tilts in b and rolls in c are not seen, being perpendicular to the plane of the paper.
late the previously unknown values of roll and tilt in the AA•TT wedge: $r=8.4^{\circ}$ and $t=2.4^{\circ}$. These two quantities are essential c... nemntine the chane of anu DNA fragment curved by AA.TT

Fig. 2 Curvature caused by interplay of AA and TT wedges in a $10-\mathrm{bp}$ repeat. Separating Tr from AA by ane more base results in 36° rotation of TT versus AA wedge components denoted by unfilled (TT) and filled (AA) arrowheads in the central column, as viewed along the axis of the DNA. Each wedge component is shown as a vector pointing in the direction of its opening, the shown as a vector pointing in the direction of the vector being proportional to the opening angle.. The long of the vector being proportional to the opening.angle. Thers the right are the magnitudes of the vectorial sum of AA and TT wedges of the central column, this sum being also the magnitude of the DNA axis deflection angle per 10 bp . In line d, the paralle and antiparallel orientations of tilts and rolls respectively, result from the 5 -bp separation between AA and TT, The DNA pitch of

$\left(5^{\prime}-\operatorname{CTTTTAAAAG}-3^{\prime}\right)_{6}$
00000000000

The work described below has been given to Alex Bolshoy, Ph D student at 1991, as an excersise.
It turned out to become a whole project. Only good mathematician could do that.

Today both Alex and myself are Professors in the Institute of Evolution, Haifa.

To ne kazhdyi svladne

Table 1. Curved and straiglit synthetic DNA fragments.

	;	Repeat unft		Curvature (k-factor)				Hisfit(std)	
	:	Circles	:	Experimental curvature			Calculated curvature	:	
	1	tctgtamanatatatamana	:	0.59 cu	(0.06)	:	0.586		0.0
	;	toanattgggeganagatcce	:	0.51 cu	(0.05)	:	0.405		2.0
	1	oggcananancggcanamang	:	0.52 cu	(0.05)	:	0.604	:	1.7
		AA- contalning	:	$\begin{aligned} & \text { Experimental } \\ & k \text {-factor } \end{aligned}$:	Calculated k-factor	:	
	1	and control fragments	:			:		:	
4	1	cttttanang	:	1.01	(0.03)	:	1.01	:	0.0
	:	gttttanang	:	1.01	(0.03)	:	1.01	:	0.0
	:	gegtegactc	:	1.00	(0.02)	:	1.03		1.5
	*	ggcancangg	:	1.01	(0.02)	:	1.08		3.4
	$!$	ggcangancg	:	1.04	(0.04)	:	1.05		0.3
	1	gegantancg	:	1.06	(0.04)	:	1.06		0.0
0	1	ogceanacco	:	1.14	(0.06)	:	1.16		0.3
11	1	gggcanamatggganamanc	:	1.43	(0.03)	:	1.42		0.2
12	1	gectggecanadancgggean	!	1.26	(0.03)	:	1.21		1.5
	1	anamcggeanamangggctce	:			:			
13	1	ogctggecananancggcana	:	1.19	(0.03)	:	1.21		0.7
	1	anaggectic	:			:			
14	1	gogtggecanamangggctcc	!	1.14	(0.03)	:	1.13		0.3
15	t	ggcaggergggeananatcg	:	2.07	(0,03)	:	1.02		1.6
	1	getgentcce	:			:			
16	1	gocagggcgetcgacggecaa	!	1.06	(0.03)	:	1.05		0.3
		anancggcgtcggecgeatce	:			:			
17	1	ogocanalagggcanantttt	!	1.11	(0.03)	:	1.16	:	1.5
	1	gccgeggecc	-			:			
10	1	ggocaniancgggcgectana	t	1.01	(0.02)	:	1.01	:	0.0
	1	attrtigccec	:			:			
19	:	anananatttttttttiana	:	1.00	(0.02)	:	1.03		1.5
20	:	anamabamamanamanama	!	0.98	(0.03)	:	1.01		1.0
21	!	TOTCCTICTTGGTTCTCTTGTC	:	1.00	(0.02)	:	1.02		0.8
22	1	cccccegccg	:	1.05	(0.06)	:	1.01		0.7
23	:	gacaggactig	:	1.01	(0.03)	:	1.03		0.8
24	1	ccatcgatg	:	0.98	(0.03)	:	1.02		1.4
25	:	cgegatgcge	:	1.00	(0.02)	:	1.02		1.0
20	1	geggetagttttttcgtacac	:	1.13	(0.02)	:	1.12		0.5
27	:	geggeattttiaggananana	:	1.25	(0.02)	:	1.25		0.2
28	:	ggetggecananancggetcc	:	1.14	(0.02)	:	1.13		0.4
29	!	acgeggecananancggcteg	:	1.14	(0.02)	:	1.15		0.4
30	!	gggtcacgananaaggggtg	:	1.12	(0.02)	:	1.08		2.0
31	!	tcagtiatatananantatat	:	1.13	(0.02)	:	1.14		0.5
32	!	tcggttatitanamaatatat	;	1.13	(0.02)	:	1.12	:	0.3
33	:	geccgtananagccgetttta	:	1.12	(0.02)	:	1.13	:	0.4
3	:	otgggacanagtgccgacana	:	1.06	(0.02)	:	1.06	:	0.1
35	:	gtgtgananancacagtitte	:	1.13	(0.02)	:	1.15	:	1.1
36	:	ahanacacacananancacag	:	1.29	(0.02)	:	1.30	:	0.4
3	:	trittanamag	:	0.99	(0.04)	:	1.04		1.2
30	:	gegctittriananacgggecg	:	1.03	(0.03)	:	1.02		0.2
39	!	ogegttititanaanangcgec	:	1.07	(0.03)	:	1.09		0.6
40	:	gecetttttananamanageg	:	1.15	(0.03)	:	1.12		0.9
4	1	gegctetttittanananacce	:	1.21	(0.03)	:	1.22		0.2
42	:	cgengcgettttatgeccagc	:	1.15	(0.03)	:	1.13	:	0.6
4	:	cgggcganamanancgegcge	:	1.09	(0.03)	:	1.04		1.6
4	:	cgggccaanaanananggcgg	:	1.04	(0.03)	:	1.01	:	1.0
4	1	cgggcearamananamancge	:	1.01	(0.03)	:	1.02	:	0.3
17	1	jgeegranianamananange	:	1.05	(0.03)	:	1.06	:	0.4
4	1	gcc ios invanamananamag	:	2.07	(0.03)	:	1.08	:	0.4
	1	non- AN fragments	:			:		:	
40	1	catgrcaccencgeatcigcg	:	1.07	(0.02)	:	1.02	:	2.3
49	1	tecceagacgtceccaccacg	:	1.02	(0.02)	:	1.01	:	0.3
50	,	gegagaggetacgeage tetg	:	1.10	(0.02)	:	1.06		2.0
51		tetgagagegecitgagatca	:	1.11	(0.02)	:	1.11		0.2
55		taggentergemitactetc	:	1.06	(0.02)	,	1.09		1.6
		gegagetatgegeagcctatc	:	1.07	(0.02)	:	1.07		0.0
	伟:	ggagagctencacgactagtg	:	1.03	(0.02)	:	1.17		6.8

AA ROLL // AA TILT

Misfit Distribution Function near the MIN

ANGLES DESCRIBING SHAPE OF DNA (DNA SHAPE CODE)

	Roll	Tilt	Twist
AA	-6.5	3	35.6
AC	(-1)	(-1)	34
AG	8	(0)	28
AT	3		31.5
CA	2	3	34.5
CC	1	2	33.7
CG	7		30
GA	-3	-5	37
GC	-5		40
TA	1		36

Positive Roll opens towards minor groove Positive Tilt opens towards phosphates

```
Bolshoy et al., 1991
Kabsch et al., 1982
```


Hususscacoumbmisi

DNA fragment from chicken chronwsoni W (stereo pair). Comprised by E. Shpigehman.

THE TWIST RESULTS IN THE CHANGE of dna helical repeat relative TO THE WINDING SURFACE

* FOR left-handed superhelix $P<P_{0}$ helical REPEAT of non-Constrained DNA
* FOR RIGHT-HANDED SUPERHELK $P>P_{0}$

TAKING KNOWN GEOMETRY OF THE NUCLEOSOME SURERHELIX ONE GETS:

$$
\begin{aligned}
\underset{\text { NUCL. }}{P} & =\underset{\text { FREE }}{P_{0}}-0.15 \mathrm{BP} \\
10.39 & =10.55-0.15 \mathrm{BP}(\pm 0.01)
\end{aligned}
$$

11 BP REPEAT

$\left(A_{6} T G C C C\right)_{n}$
\qquad
\uparrow
Fig. 2 Stereo micrographs of $\left[(A)_{5} T G C C C\right]_{54}$ DNA molecules and a 3D reconstructions of one molecule. For cryo-EM the DNA molecules are suspended in TE buffer (10 mM Tris-CI, 1 mM EDTA, pH. 8.0)(refs 6,9). The molecules, in a thin vitrified layer of buffer are confined to a thickness of about 50 nm (ref. 9). As the axial length of the superhelices is greater than 50 nm , they adopt an overall orientation approximately parallel to the plane of the thin layer. They are thus seen in almost lateral projections. The large angular difference between stereo partners ($+15^{\circ}$ and -15° respectively) allows precise 3D reconstruction by a numerical method ${ }^{2,9,10}$ but makes it difficult to perceive 3D by direct viewing of the stereopair (a). b, Some molecules are traced over for clarity. C, The 3D reconstruction of the superhelical path of one of the observed [(A), TGCCC] ${ }_{54}$ DNA molecules (left). For comparison, a similar reconstruction obtained from I(A) TGCCCI DNA molecules is presented (right). Scale bar $=100 \mathrm{~nm}$. The DNA plasmid with the insert I(A) TGCCCl , was kindly provided by G.J. Brahms and the insert purified as described ${ }^{8}$. To obtain $[(A)$ TGCC] oligomers 22 bases long (2 times 11 bp), phosphorylated, custom synthesized and HPLC purified oligomers (Med-Probe) were used for thermal annealing and subsequent ligation. For the ligation 400 U of T4 DNA ligase (Biolabs), was used to ligate $0.5 \mu \mathrm{~g}$ of annealed 22-mers in $10 \mu \mathrm{l}$ reaction volume, during 16 h at $18^{\circ} \mathrm{C}$.
J.Dubochet
J. Bednar
P. Furrer
A. z. Stasiak
A. Stasiak
A. A. Bolshoy

NATURALLY SUPERCOILED PROKARYOTIC DNA MAKES AN INTER WOUND RIGHTHANDED SUPERHELIX

AN ADDITIONAL TWIST IS INTRODUCED

$$
T=N \sin \alpha \cdot 360^{\circ}
$$

DNA IN THE NUCLEOSOME $(\alpha<0): 10.39 \mathrm{BP} /$ TURN
FREE DNA $(\alpha=0)$:
10. $54 \mathrm{BP} /$ TURN

EUBACTERIAL SUPERCOILED DNA $(\alpha>0): \sim 11.0 \mathrm{BP} /$ TURN
ARCHEBACTERIAL - "- $(\alpha<0): \sim 10.0 \mathrm{BP} /$ TURN

TOPOLOGICALLY EQUIVALENT SUPERHELICAL STRUCTURES (negatively supercolled)

TOROIDAL SUPERHELIX
INTERWOUND SUPERHELIX
THESE HELICES
ARE OF OPPOSITE HANDEDNESS
(AND YET EQUIVALENT!)
侖

WRITHE:

SAME,
 BUT DIFFERENT PERIOD
 (11.2 BASES IN BACTERIA)

CHROMATIN CODE

EXPERIMENT OF B. PONDER AND L. CRAWFORD (CeLL 11, 35, 1977)

RANDOM

Digestion of BamHI nucleosome of SV40 by BamHI

Ponder BAJ, Crawford LV, Cell 11, 35-49, 1977
~145bp
~93bp
~83bp
~73bp
~63bp

Whole-genome periodicities (distance analysis)

S. cerevisiae
C. elegans
A. thaliana
D. rerio
C. albicans
A. mellifera
D. melanogaster
A. gambiae
C. reinhardtii
G. gallus
D. discoideum
H. sapiens
M. musculus

AA	TT	Cg	Gc	CA	Tg	${ }_{\text {AG }}$	Ст	AT	GG		GA		${ }_{\text {AC }}$	GT	
+	+	+	+	+	+	+	+	+	+	+	+	+	-	-	
+	+	+	+	+	+	+	+	+	-	-	+	+	+	+	
+	+	-	+	+	+	-	-	+	+	-	-	-	-	-	
+	+	-	+	-	-	-	-	-	+	+		-	-	-	
+	+	-	-	+	+	-	-	-	-	-	-	-	-	-	
+	+	+	+	-	-	-	-	-	-	-	-	-	-	-	
+	+	+	+	-	-	-	-	-	-	-	-	-	-	-	
$+$	+	-	-	-	-	-	-	-	-	-	-	-	-	-	
-	-	-	-		-	+	+	-	-	-	-	-	-		
-	-	+	-	-	-	-	-	-	-	-	-	-	-	-	
	-	+													

T.Bettecken, E.N.T., 2009

Although DNA curvature and DNA bending are both reflected in the sequence as 10-11 base periodicity of the dinucleotides,
these are two different phenomena
and the corresponding sequence patterns are different

DEFORMATIONAL ANISOTROPY (IN RD)

isotropic deformation

anisotropic deformation

DIRECTION OF BETTER BENDING AND DIRECTION OF INTRINSIC CURVATURE are not necessarily the same

BETTER BENDING
against curvature

Ventral

Side

Lab of G. Bunick, 2000


```
Structural and sequence periodicity of nucleosome DNA
DNase I digestion of chromatin 10.30-10.40 bp 
Beat effect, DNase I
    10.33-10.40 bp
                                Bettecken, 1979
Analytical geometry of nucl. DNA 10.30-10.50 bp
                                Ulanovsky, 1983
DNA path in nucleosome crystals 10.36-10.44 bp
                                    Cohanim, 2006
DNase I digestion of chromatin 10.36-10.44 bp
                                    Duke University, 2013
                                    Common range 10.36-10.40 bp
```

Although the DNAse I makes cuts in the nucleosome DNA every 10.3 to 10.4 bases, at the local dyads 1 and 4 periods from the central dyad in both directions the cutting is less efficient, as if locally inhibited.

If the period would be integer, the orientations of potential cut sutes on the surface would be identical, resulting in equal efficiency of cutting.

The non-integer period would cause many different orientations, of which some could be unfavorable.

The nucleosome DNA structural period is between 10.333 and 10.400

pitch of DNA												
(base pairs)	I	II	III	IV	V	VI	VII VIII	IX	X	XI	XII	XIII
10.000-10.100	+	+									+	+
10.100-10.125		+	+							+	+	
10.125-10.167			+	+					+	+		
10.167-10.222				+	+			+	+			
10.222-10.273	+				+			+				+
10.273-10.333		+			+			+			+	
10.333-10.400												
10.400-10.444	+					+	+					+
10.444-10.556				+		+	+		+			
10.556-10.600	+					+	+					+
10.600-10.667												
10.667-10.727		+			+			+			+	
10.727-10.778	+				+			+				+
10.778-10.833				+	+			+	+			
10.833-10.875			+	+					+	+		
10.875-10.900		+	+							+	+	
10.900-11.000	+	+									+	+

Noninteger Pitch and Nuclease Sensitivity of Chromatin DNA
Edward N. Trifonov and Thomas Bettecken, Biochemistry, 1979

With the period 10.4 bases, and central position optimal for the cut:

| Period No. | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Bases from
 Center | 52 | 41.6 | 31.2 | 20.8 | 10.4 | 0 | 10.4 | 20.8 | 31.2 | 41.6 | 52 |
| Off from
 Integer | 0 | 0.4 | 0.2 | 0.2 | 0.4 | 0 | 0.4 | 0.2 | 0.2 | 0.4 | 0 |

Nucleosome crystal data reveal the

 10.4-base structural period of the nucleosome DNA (A. Cohanim et al., 2006)

Nucleosome core -

 particle built of two side-by-side superhelices (histones and DNA), 1.5 turns eachIt contains $\sim 125 \mathrm{bp}$ of DNA with structural period 10.4 bp

The topologically linear structure suggests a simple mode of nucleosome unfolding during template processes

Prediction (1980):

In the fragments of DNA bent in the nucleosome the sequence should favor periodically positioned like-named elements, $10-11$ bases apart.

Since $\sim 70 \%$ of DNA is involved in the nucleosomes any long sequence should also possess the periodicity.
(Since the nucleosomes generally are not phased, the periodicity would span only the nucleosome sequence size)

PuPu.PyPy

PuPy-PuPy

PyPu-PyPu

FIGURE 1. Projected views of two successive base-pairs of B DNA. Three possible cases of purine and pyrimidine base overlap are shown. Helix axes (perpendicular to the base-pairs) are indicated by crosses. Overlapping of the heterocyclic rings is shown in black. (From Arnott, S., Dover, S. D., and Wonacott, A. J., Acta Crystallogr., B25, 2192, 1969. With permission.)

```
E.T.
CRC CRIT. ReV. BIOCH.
v.19,1985
```

Purine-purine (RR) stacks should be placed closer to the surface of histone octamer,
to minimize cost of deformation

5’...YYYRRRRRYYYYYRRR...

Second important prediction:

The deformation (bending) should follow the dyad symmetry of DNA molecule.

So should the dinucleotide elements (stacks).

Thus, within the sequence period
AA and TT elements should be on opposite sides from the axes, at the same distance

First matrix of nucleosome DNA bendability

Mengeritsky and ENT, 1983

The dyad symmetry of the DNA in the nucleosome has been mistakenly replaced in 1986 (Cambridge UK) by mirror symmetry.

This had catastrophic consequences
for trustful naïve chromatin community (biologists) (blind to the difference), causing major confusion worldwide, still in effect

Satchwell SC, Drew H, Travers AA
J Mol Biol 1986

Segal,..., Widom, Nature 2006

History of the chromatin code

Pre-genomic studies

```
...T T A A A A A T T T T T A A A A A T T... Mengeritsky, Trifonov (1983)
...Y Y R R R R R Y Y Y Y Y R R R R R Y Y... Mengeritsky, Trifonov (1983)
...x Y R X X x R Y x x x Y R x x x R Y x... Zhurkin (1983)
...S S S S x W W W W x S S S S x W W W W... Satchwell et al. (1986)
...x S S S x x W W W x x S S S x x W W W... Shrader, Crothers (1989),Tanaka et al.,(1992)
...C C x x x x x C C C C C x x x x x C C... Bolshoy (1995)
...V W G x x x x x x x V W G x x x x x x... Baldi et al. (1996)
...x x G G R x x x x x x x G G R x x x x... Travers, Muyldermans (1996)
...A C G C C T A T A A A C G C C T A T A... Widlund et al. (1997)
...C T A G x x x x x x C T A G x x x x x... Lowary, Widom (1998)
...SSA A A A A S S S S S A A A A A S S... Fitzgerald, Anderson (1998)
...C C G G G G G C C C C C G G G G G C C... Kogan et al. (2006)
```


Genome-scale analyses

...T T A A A A A T T T T T A A A A A T T... Cohanim et al. (2006)
...Y T A R A A A T T T Y T A R A A A T Y... Salih et al. (2008)
... Y Y R R R R R Y Y Y Y Y R R R R R Y Y... Salih et al. (2008)
...S S S S x W W W W x S S S S x W W W W... Chung, Vingron (2009)
Whole-genome nucleosome databases
...C C G G A A A T T T C C G G A A A T T... Gabdank et al. (2009)

Physics

CC G GAAA T T T C G GAAA T T... Trifonov (2010)

Methods of sequence analysis used for detection of nucleosome pattern(s)

1. Distance analysis (positional correlation)
2. Iteration with random start
3. Multiple alignment
4. Regeneration of the signal from its parts
5. Shannon N -gram extension

Methods that failed:
Fourier transform
Hidden Markov model
Many more failures not publicized

Nucleosome positioning sequence pattern is very weak (as the nucleosomes should be easy to unfold)
That is why it took so long to crack the code.

The weak pattern overlaps with other messages ("noise").

That makes the signal/noise ratio very low.

VERY large
database of the nucleosome DNA sequences is needed, to extract the signal and describe it in detail

It is easy, however, to detect the signal

Only few properly positioned dinucleotides per nucleosome are sufficient to claim unique position for the nucleosome

Two good nucleosomes may have completely different sequence.
> cacgaaagccacgccggaatc gcgcggcttgtgtgaatccag

ccggaaatttccggaaatttc

These two sequences
have not a single common base. But both are very good for nucleosome

The ideal sequence
to which they both match

Available databases
of natural nucleosome DNA sequences :
S. Satchwell et al., 1986
I. Ioshikhes et al., 1996
M. Kato et al., $2003 \sim 1,300$ sequences (human)
S. Johnson et al., 2006 163,651 sequences (C. elegans)

Mavrich et al., 2008
Schones et al., 2008
Mavrich et al., 2008
$\sim 10^{5} \quad$ sequences (yeast)
$\sim 10^{6}$ sequences (H. sapiens)
$\sim 10^{6}$ sequences (fruit fly)

Micrococcal nuclease (MNase)

 is popular nuclease for digestion of chromatin. It cuts preferentially at \downarrow WWWW (\downarrow AATT) sites at the ends of the nucleosome DNAAll these databases contain nucleosomes with only marginal periodicity which may be detected, but very difficult to reveal details.

The maps derived by MNase digestion are especially inaccurate, providing rather diffuse nucleosome occupancies rather than positions.

Various signal extraction techniques have to be applied

Regeneration of signal from its incomplete versions:

AA

AAnnnnnnnnAA

AAnnnCCnnnAA
positional autocorrelation
regeneration

AAnnnnnnnnAA repeat structure (C. elegans)

Regenerated pattern (AAATTTCCGG)(AAAT... That is, repeating GGAAATTTCC $=$ R5Y5

Several reasons for a given dinucleotide to occupy specific position within the repeat:

1. Physical (deformational) preference.
2. Sequence linkage (inclusion effect). Dinucleotide AB has to have neighbors NA and BN.
3. Exclusion effect. Less committed elements are pushed away from strong positions.
4. Compositional bias. Frequent dinucleotides contribute more to the periodicity.
5. Existence of many different codes overlapping on the same sequence (e. g. triplet code, framing code, splicing code, amphipatic helices)

Positional matrix of bendability

$$
\begin{aligned}
& \begin{array}{llllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0 & 1 & 2
\end{array} \\
& \text { C G } \\
& \text { C G } \\
& \text { G G } \\
& \text { G A } \\
& \text { G A } \\
& \text { A A } \\
& \text { A A A } \\
& \text { A T } \\
& \mathrm{T} T \mathrm{~T} \\
& \text { T T } \\
& \text { T C } \\
& \text { T C } \\
& \text { C C } \\
& \text { C G }
\end{aligned}
$$

LINEAR FORM OF THE POSITIONAL MATRIX OF BENDABILITY:

CGRAAATTTYCG

Matrix of bendability

for all 6 chromosomes of C. elegans

Self-complementary elements AT and CG are separated by 5 bases (half-period) and positioned at the axes of complementary symmetry

Shannon N-gram extension

Trinucleotides of
 C. elegans genome

		counts
1	AAA	4162266
2	TTT	4160750
3	ATT	2488998
4	AAT	2486813
5	GAA	1873844
6	TTC	1871673
7	CAA	1667120
8	TTG	1663842
9	TCA	1498069
10	TGA	1496493
$\ldots . .$.	$\ldots .$.	

Shannon N-gram extension

```
                            AAA
                        AAA A. Rapoport,
                        AAT Z. Frenkel,
                            GAA ATT E.N.T., 2010
                    TGA TTT
                    TTG TTT
            TTT TTC
            TTT TCA
                ATT CAA
            AAT AAA
            AAA AAA
            AAA AAT
            GAA ATT
                TGA TTT
                TTG TTT
            TTT
                                    TTC
                                    TTT
                                    TCA
                            . . .TTTTGAAAATTTTGAAAATTTTCAAAATTTTCA. . .
                            ...AAA... : TTTtgAAAATTTTcaAAA
                            ...CGA... : TTTcgAAAATTTTcgAAA
regeneration : TTYCGRAAATTTYCGRAA
```


TOPMOST TRINUCLEOTIDES
 MAKE TOGETHER THE DOMINANT PATTERN

GAAAATTTTC:

GAAAATTTTC
GAAAATTTTC
GAAAATTTTC GAAAATTTTC GAAAATTTTC
GAAAATTTTC GAAAATTTTC GAAAATTTTC

Trinucleotides of human genome fuse in the sequence CC GGAAA TTTCC GG


```
```

species

```
```

species
starting
starting
triplets

```
```

triplets

```
```

A.gamb	TTT
A.mell	TTT
A.thali	AAA
C.albic	AAA
C.eleg	AAA
C.reinh	GGC
D.disc	AAA
D.melan	AAA
D.rerio	AAA
G.gall	TTT
H.sapi	TTT
M.musc	TTT
S.cerev	AAA

Fig. 3. N-gram Shannon extensions
of the most frequent trinucleotides of various genomes, as indicated. Only the central parts of the extensions (underlined) are shown.

| c | extention motifs | species | starting |
| :---: | :---: | :---: | :---: | :---: |
| triplets | | | |

Fig. 4. Extensions of the topmost CG-containing trinucleotides of various genomes, as indicated. Only the central parts of the extensions (underlined) are shown. Four genomes with extensions that do not conform to others, are separated.

CHROMATIN CODE:

$$
\begin{aligned}
& \text { C GRAAATTTYC } \\
& Y R R R R E Y Y Y Y R
\end{aligned}
$$

as derived by 3 independent methods:

1. From physics of DNA deformation
2. From nucleosome database of C. elegans
3. By Shannon N-gram extension

The hidden chromatin code is described by the motif:

CGRAAATTTYCG
 0
 0

An ideal nucleosome DNA in simple sequence form is periodical repetition of this motif:

...TTTCCGGAAATTTCCGGAAA...

...ATTCGTTCCATTGAAGGCCG... ...CGAACGCTTGGTTAGCGATT... ...CCAGAATAAATACAGTCCAA... ...AATCGCCTTTAAAGGGGTTT... ...GAGTTCGACTCCAATCAGGG... ...CGGTACCCTCAGACCCATTC... ...CATCTATTCCAAATTTTCGC...

Cat in bushes. Courtesy of I. Gabdank

Example of the output from the nucleosome mapping server http://www.cs.bgu.ac.il/~nucleom

Examples of mapping of sharply positioned nucleosomes

BamHI nucleosome of Ponder and Crawford, 1977

Match of the BamHI nucleosome (typical semistable nucleosome) to the standard nucleosome probes (GAAAATTTTC) n and (RRRRRYYYYY) n

The RR/YY dinucleotide match is 41/116, between 29/116 (random) and 116/116 (strongest)

BamHI fragments of BamHI nucleosome DNA

Calculated	Observable in the gel			
24				
34				
43	~ 53			
54	~ 63			
64	(~ 73)			
	~ 83			
82	~ 93	$	$	
:---				
92				

Sequences with different $\mathrm{G}+\mathrm{C}$ composition utilize different RR and YY dinucleotides for nucleosome positioning

Human isochores
Lab of G. Bernardi, 2006

Nucleosome positioning patterns of various isochores (Frenkel et al., 2011) by N -gram extension
isochores G+C \%

Y RRRRR YYYYY R

10-11 base periodicity

 in prokaryotesOriginal calculations on a small sequence ensemble (30000 bases only) indicated that the sequence periodicity of $10-11$ bases is characteristic of only eukaryotic sequences

Later on it turned out that
prokaryotic genomes are periodical as well, apparently to maintain DNA superhelicity

In prokaryotes where 85% of genome are protein-coding the DNA curvature signal (10-11 base period) massively overlaps with the protein-coding signal (3 base period)

Triplet extension (Shannon) patterns for $A+T$ rich prokaryotic genomes

```
species
```

G+C content \%

```
```

extension

```
```

extension
motif

```
```

 motif
    ```
```

```
F. nucleatum
```

F. nucleatum
27.2
27.2
N. equitans 31.6
N. equitans 31.6
[(a)t](A)(T)[(a)t]
[(a)t](A)(T)[(a)t]
(ta)t(A) t(at)
(ta)t(A) t(at)
- " -
- " -
(at)a (T)a(ta)
(at)a (T)a(ta)
S. solfataricus
S. solfataricus
35.8
35.8
T. denicola 37.9
T. denicola 37.9
C. pneumoniae 40.0
C. pneumoniae 40.0
- " -
- " -
A(A)(I)[a(t)]
A(A)(I)[a(t)]
[g(a)]G(A)[g(a)
[g(a)]G(A)[g(a)
[(t)c] (T)C[(t)c]
[(t)c] (T)C[(t)c]
[g(a)]G(A)(T)C[(t)c]
[g(a)]G(A)(T)C[(t)c]
M. acetivorans
M. acetivorans
4 2 . 7
4 2 . 7
A. aeolicus 43.3
A. aeolicus 43.3
- " -
- " -
[gg(a)]gG(A)[gg(a)]
[gg(a)]gG(A)[gg(a)]
[(t)cc](T)Cc[(t)cc]
[(t)cc](T)Cc[(t)cc]
B. subtilis
B. subtilis
43.5 [g(a)(t)]G(A)(T)C[(a)(t)c]
43.5 [g(a)(t)]G(A)(T)C[(a)(t)c]
46.2 (gaa)G(A)[g(a)]
46.2 (gaa)G(A)[g(a)]
[(t)c](T)C(ttc)
[(t)c](T)C(ttc)
D. ethenogenes
D. ethenogenes
48.9
48.9
(cggc) cggc (T)Cagccg(gccg)
(cggc) cggc (T)Cagccg(gccg)
G(A)(T) C

```
                    G(A)(T) C
```

CGAAAATTTTCG
same as in eukaryotes!:

α-helices

10-15 aa long
(30-45 bases in DNA)
often amphipatic
(alternating hydrophobic/hydrophilic aa)

Period ~ 3.5 residues
(~ 10.5 bases in DNA)
Leu (L) - TTx in DNA
Lys (K) - AAx in DNA

What this periodical motif codes for in prokaryotes?

(GAAAATTTTC) (GAAAATTTTC) (GAAAATTTTC)

GAA AAT TTT CGA AAA TTT TCG AAA ATT TTC glu asn phe arg lys phe ser lys ile phe

non-polar
 polar amino acids amino acids

| ala | |
| :--- | :--- |
| gly | |
| ile | $\frac{\text { arg }}{\text { asn }}$ |
| leu | $\frac{\text { asp }}{\text { met }}$ |
| phe | $\frac{\text { glu }}{\text { pln }}$ |
| pro | his |
| val | $\frac{\text { lys }}{\text { ser }}$ |
| | $\frac{\text { thr }}{}$ |
| | trp |
| | tyr |

Alu NUCLEOSOMES

Alu sequence (consensus)

ggccgggcgcggtgg 15
ctcacgcctgtaatcccagcactttgggaggc 47
CGaggcgggCGgatcacctgaggtcaggagtt 79
CGagaccagcctggc-caacatggtgaaaccc 110
CGtctctactaaaaatacaaaaattagccggg 142
CGtggtggcgCGcgcctgtaatcccagctact 174
CGggaggctgaggcaggagaatCGcttgaacc 206
CGggaggcggaggttgcagtgagccgagatcg 238
CGccactgcactccagcctgggCGacagagcg 270
agactccgtctcaaaaaaaa

```
Alu, hidden 8-base repeat
ggccggg cgcggtgg 15
ctcacgcc tgtaatcc cagcactt tgggaggc 47
CGaggcgg gcggatca cctgaggt caggagtt 79
CGagacca gcctggc- caacatgg tgaaaccc 110
CGtctcta ctaaaaat acaaaaat tagccggg 142
CGtggtgg cgcgcgcc tgtaatcc cagctact 174
CGggaggc tgaggcag gagaatcg cttgaacc 206
CGggaggc ggaggttg cagtgagc cgagatcg 238
CGccactg cact-cca -gcctggg cgacagag 268
CGagactc cgtctcaa aaaaaa
Yrrrrxxx Yrrrrxxx Yrrrrxxx Yrrrrxxx
```

that is, the Alu repeat is itself a degenerate simple tandem repeat

Two halves of Alu

| | | ggccgag | cgcggtgg | 15 | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ctcacgcc | tgtaatcc | cagcactt | tgggaggc | 47 | |
| CGaggcgg | gcggatca | cotgaggt | caggagtt | 79 | |
| CGagacca | -gcctggc | caacatgg | tgaaaccc | 110 | |
| CGtctcta | ctaaaaat | acaaaaa | | 133 | |
| | t | tagccggg | CGtggtgg | 150 | (15) |
| cgcgcgcc | tgtaatcc | cagctact | CGggaggc | 182 | (47) |
| tgaggcag ggagg | gagaatcg | cttgaacc | CGggaggc | 214 | (79) |
| ttg | cagtgagc | cgagatcg | CGccactg | 246 | 31 base |
| cact | | | | | insert |
| -cca | -gcctggg | cgacagag | CGagactc | 276 | (110) |
| cgtctcaa | aaaaaa | | | 290 | (133) |

The insert is of very proper size, apparently, to maintain/improve the $(31-32)_{\mathrm{n}}$ pattern

Alu is made of two repeating pieces of 7S RNA

ggccgggcgcggtgg

ctcacgcctgtaatcccagcactttgggaggc
$=\mathrm{G}=\mathrm{GT}=======\mathrm{G}=======\mathrm{TAC}=\mathrm{C}=======$
CGaggcgggcggatcacctgaggtcaggagtt
$\mathrm{T}====\mathrm{T}===\mathrm{A}=====\mathrm{G}=\mathrm{T}====\mathrm{TC}=======$
CGagaccagcctggc-caacatggtgaaaccc 110
$=T G=G=T G T A G==C G-=T=T$
CGtctctactaaaaatacaaaaattagccggg142

$$
=====
$$

CGtggtggcgcgcgcctgtaatcccagctact 174
==C=========T=======G===========
7S RNA
CGggaggctgaggcaggagaatcgcttgaacc 206
==============T====G=========GT=
CGggaggcggaggttgcagtgagccgagatcg 238
=A====TTCTG==C==T====C==TAT
CGccactgcact-cca-gcctgggcgacagag 268
CGagactccgtctcaaaaaaaa

All major types of the Alu repeats have regularly positioned CG

97

nucleosome 1 bends:
AluJ agcactttgggaggcCGaggcgggaggatcacttgagcccaggagttCGagaccagcctgggcaacatagtgaaacccCGtctctacaaaaaatacaaaaattagccgggCGtggtggcgcgcgcct AluSx agcactttgggaggcCGaggcgggcggatcacctgaggtcaggagttCGagaccagcctggccaacatggtgaaacccCGtctctactaaaaatacaaaaattagccgggCGtggtggcgcgcgcct AluSq agcactttgggaggc CGaggcgggtggatcacctgaggtcaggagttCGagaccagcctggccaacatggtgaaacccCGtctctactaaaaatacaaaaattagccgggCGtggtggcgggcgcct AluSp agcactttgggaggcCGaggcgggcggatcacctgaggtcgggagttCGagaccagcctgaccaacatggagaaacccCGtctctactaaaaatacaaaaattagccgggCGtggtggcgcatgcct AluSc ccagcactttgggaggcCGaggcgggcggatcacgaggtcaagagatCGagaccatcctggccaacatggtgaaacccCGtctctactaaaaatacaaaaattagctgggCGtggtggcgcgcgcct AluY cagcactttgggaggcCGaggcgggcggatcacgaggtcaggagatCGagaccatcctggctaacacggtgaaacccCGtctctactaaaaatacaaaaaattagccgggCGtggtggcgggcgcct AluYa5 cagcactttgggaggcCGaggcgggcggatcacgaggtcaggagatCGagaccatcccggctaaaacggtgaaacccCGtctctactaaaaatacaaaaaattagccgggCGtagtggcgggcgcct AluYa8 ccagcactttgggaggcCGaggcgggcggatcacgaggtcaggagatCGagaccatcccggctaaaacggtgaaacccCGtctctactaaaactacaaaaaatagccgggCGtagtggcgggcgcct AluYb8 cagcactttgggaggcCGaggcgggtggatcatgaggtcaggagatCGagaccatcctggctaacaaggtgaaacccCGtctctactaaaaatacaaaaaattagccgggCGcggtggcgggcgcct

223

nucleosome 2 bends:

Whole genome (human) shows

 only 31 n periodicity

Methylation/demethylation of properly positioned CG in the nucleosome DNA
leads to weakening/strengthening of the nucleosome,
which is, thus, an epigenetic nucleosome

Applications of single-base resolution nucleosome mapping

Example of the nucleosomes at and around GT splice junction

Hapala, 2011

Guanines of GT- and AG-ends of introns are oriented towards the surface of the histone octamer, away from exterior.

Such orientation protects guanines from spontaneous depurination and oxidation

The most frequent spontaneous damages to DNA bases:
depurination of G oxidation of G
deamination of C

TATA-box

Gershenzon, Drosophila, 2006

Nucleosomes around transcription start sites (Drosophila)

Nucleosome DNA which carries promoter TATAAA box has two rotational settings encoded in the sequence (two peaks within one period).

Jan Hapala \& ET, 2013

TATA-switch

Two alternative positions of TATAAA box in the promoter nucleosomes are separated by 140 (220) degrees, which corresponds to exposed and inaccessible orientations of the box.

By shifting the DNA along its path by 4(6) bases, the promoter is switched ON or OFF.

The switch (shift) may be triggered by remodelers or transcription factors.

Plenty of various other nucleosome positioning patterns have been suggested during 30 years since the first observation of sequence periodicity. At the best they provide occupancy maps (resolution of ~ 15 bases).

The (GRAAATTTYC)n and (RRRRRYYYYY)n are the only patterns that generate maps with single-base resolution, verified by crystal data.

The future of the chromatin structure/function is with the high resolution studies.

Deciphering of the chromatin code opens a new era of high resolution chromatin studies

One can now obtain accurate information on translational and rotational positioning of DNA in the nucleosomes,

for any sequence,

 in no time
Nucleosome mapping in no time, with 1 base resolution:

http://www.cs.bgu.ac.il/~nucleom/

Gabdank et al., 2010

Higher order structure of chromatin

Nucleosomes are organized in 3D space in an unknown way - higher order chromatin structure

Important element of the higher order structure is dinucleosome (1981, laboratories of L. Burgoyne and of V. Vorobiev)

BURGOYNE \& SKINNER
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS
99, 893, 1981

FIGURE 3 Ferritin based, DNAase-I armed probe attack on rat liver nuclei.
All conditions as for the experiment shown in Figure 2.25 mins digestion time. Curve $A-S t a n d a r d 1 N$, $2 N$, etc. series producted by autolysis of rat liver nuclei by their intrinsic Ca-Mg nuclease. Curve Rat liver nuclei digested with Ferritin-DNAase-I as in Fig. 2. 15 mins digestion. Curve C - As for Curve B, 30 mins digestion.

The deformational properties of DNA
is not the only sequence-dependent factor of nucleosome positioning.

The second factor is the steric exclusion rules, imposing limitations to the linker lengths.

STRONG NUCLEOSOMES

The periodic signal in the nucleosome DNA sequence is very weak, and it is rather hard task to find out what would be the true nucleosome positioning sequence.

Actually, none of the experimentally extracted nucleosome DNA sequences shows any visible periodicity.

The periodic hidden signal could be only revealed by one or another signal processing procedure applied to large amount of sequences.

Lowary and Widom (1998) took
large ensemble of synthetic DNA fragments
with random sequences,
and selected those of them
which formed strong nucleosomes

The sequences demonstrated very strong periodicity of TA dinucleotides

Clone 601,

from collection of Lowary and Widom (1998):
. . . CAGCGCGTACGTGCGTTTAAGCGGTGCTAGAGCTGTCTAC . . .

TACGTGCGTTTA
 TAAGCGGTGCTA
 TAGAGCTGTCTA

We took all TAnnnnnnnnTA segments from the collection of Lowary/Widom, and analysed which dinucleotides are most frequently located in the interval between TA, and in which positions

Regeneration of signal from its incomplete versions:

AA

AAnnnnnnnnAA

all occurrences of AAnnnnnnnnAA are aligned, and other dinucleotides counted within the period
regeneration
all occurrences of AAnnnnnnnnAA
are aligned, and other dinucleotides
counted within the period

AAnnnnCCnnAA

Gabdank, 2009

Bendability matrix for strong nucleosome DNAs of Lowary and Widom collection

| | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AA | 0 | 16 | 3 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| AC | 0 | 5 | 2 | 5 | 2 | 3 | 5 | 3 | 1 | 0 | 0 |
| AG | 0 | 25 | 11 | 9 | 2 | 4 | 1 | 1 | 1 | 0 | 0 |
| AT | 0 | 2 | 0 | 3 | 1 | 1 | 3 | 1 | 2 | 0 | 0 |
| CA | 0 | 0 | 1 | 0 | 2 | 4 | 3 | 1 | 0 | 0 | 0 |
| CC | 0 | 0 | 0 | 0 | 5 | 4 | 7 | 3 | 6 | 0 | 0 |
| CG | 0 | 0 | 4 | 4 | 4 | 4 | 4 | 5 | 3 | 0 | 0 |
| Ст | 0 | 0 | 0 | 2 | 1 | 2 | 1 | 9 | 11 | 22 | 0 |
| GA | 0 | 0 | 12 | 4 | 3 | 3 | 0 | 0 | 0 | 0 | 0 |
| GC | 0 | 0 | 4 | 7 | 6 | 7 | 5 | 10 | 5 | 0 | 0 |
| GG | 0 | 0 | 7 | | 3 | 3 | 7 | 0 | 1 | 0 | 0 |
| GT | 0 | 0 | 2 | 7 | 6 | 4 | 5 | 6 | 2 | 6 | 0 |
| TA | 48 | 0 | 1 | 1 | 4 | 1 | 2 | 3 | 0 | 0 | 48 |
| тС | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 4 | 10 | 0 | 0 |
| TG | 0 | 0 | 0 | 1 | 8 | 6 | 4 | 2 | 1 | 0 | 0 |
| TT | 0 | 0 | 1 | 1 | | | | 0 | | 20 | |

```
T A G A G x x x x C T A - manually
T A G A G G C C T C T A - by dynamic programming
Y R R R R R Y Y Y Y Y R
```

```
T A G A G G C C T C T A
```

T A G A G G C C T C T A

山 D 山 D D \ . \# \ \# 山

```
# 山 D 山 D D \ . # \ # 山
```

The periodical pattern hidden in the sequences of Lowary and Widom is selfcomplementary， and manifests alternation of RRRRR and YYYYY

Taking the elegant idea of Lowary and Widom as a lead
we extracted natural strong nucleosomes
from whole genomes computationally.

We looked for periodical sequences in genomes

Magic distances, $10.4 \bullet n$ bases

| | nearest
 integers |
| ---: | :---: |
| 10.4 | 10 |
| 20.8 | 21 |
| 31.2 | 31 |
| 41.6 | 42 |
| 52.0 | 52 |
| 62.4 | 62 |
| 72.8 | 73 |
| 83.2 | 83 |
| 93.6 | 94 |
| 104.0 | 104 |
| 114.4 | 114 |

The ideal nucleosome positioning sequence would contain some periodically repeating motif, and all the distances between the same dinucleotides would be magic distances. Strong nucleosome DNA would show many magic distances.

The strongest nucleosomes of A. thaliana display very clear though still imperfect periodicity

TAAACTCTTTAAAAATСTTTTAAAACCCTTGTACATATCTTAAAACCCTTTTAAAATCTCTTGTAAATCTTTAAAACCCTTTTAAAATCCCTTGTAAATCTTTTAAAACCCTTT
АААТАТTTTAAAACACTTTTCAAACAATTTTGAACCCTTTAAAAATCTTTATAAAACCTTTGTAAATCTTTTAAAGCCCTTTAAAATCTCTTATAAATCTTTTAAAACCCTTTTA СССТGTAAAACTTTTAAAACCCTTTTAAAATCCCTTGTAAATCTTTTTAAACCCTTTTAAAATCCTTGTAAATATTTTAAAATCCCGTGTAATTCTTTTAAAACTCTTTTAAAAT AAATTTTAAAAAGGTTTTATAAGATTTGCAAGGGATTTTAAAGGGATTTAAAAGATTTACAAAAGTTTTTTAAAGGTTTAAAATTGTTTTAAAAGGATTTTAAAATATTTACAAG TTTTAAAAGGGTTTTAAAATATTTACATATGTTTTTTAAAGTTTTTTTAAAGGGTTTAAAAGTGTTTTGCAAGATTTACAAGAGATTTTAAAAGGGTTTTAAGAGATTTACAAGAG ATCCTTTAAAAAATCATGTAAATCTTTTTAAAACCTTTTAAAATCCCTTGTAAATCTTTTTAAAATCCTTTTAAAATCTCTTGTAAATGTTTAAAAACCCTTTTAAAATCTCTTGT AAGGGTTTTAAAATATTTACAAGGGATTTTAAAAGGGTTTTAAAAAATTTACAAGTGATTTTAAAAGATTTACAAGGGATTTTAAAAGGTTTTAAAAAAATTTACAAAAGTTTAT AAATGTTTTAAAACCTTTTTAAAATAATTTTAAACCCTTTAAAAATCGTTAAAAAACTTTTGTAAATCTTTTAAAGCCCTTTAAAATCCCTTGTAAATATTATAAACCCTTTTA TGATTTTTAAAAGGGTTTAAAAAGATTTACAAGGGATTTTAAAAGGGTTTTAAAAAATTTACAAGAGATTTTAAAAGGTTTTAAAAAGATTTACAAGAGTTTTTAAAGGGTCTTCTT
ССТTTAAAATCCCTTGTAAATCTTTTAAAACCCTTTTCAAATCCCTTGTAAATGTTTTAAAACCCTTTTAGAACAATTTTAAACCCTTTAAAAATCTTTAAAAACCCTTTGTAAA TTTACAAAGGTTTTTAAAAGATTTTGAAAGGGTTTAAAAGTGTTTTAAAAGATTTACAAGGGATTTTAAAAGGGTTTTTAAAGATTTACAAGAGATTTTAAAAGGGTTTTAAAAGA СТTGTAAATCTTTTAAAACCCTTTTAAAATCCTTTGTAAATATTTTAAAAGCCTTTTAAAATCCATTGTAAATCTTTTAAAATCCTTTGTAAATCTTTTAAAACCCTTTTAAAAT AGGATTTTAAAAATGTTTTAAAAGATTTACAATGGATTTTAAAAGGGTTTAAAATATTTATAAGGGATTTTGAAGGGCTTTCAAAGATTTATAAAGGTTTTTTAAAAATTTTTAA TTGTAAATTATTTAAAAATCTTTTAAAACTCCTTGTACATCTTTTAAAACTCTTTTAAAATTTCTTGTAAATCTTTAAAACCCTTTAAAATCCCTTGTAAATCTTTTAAAATACT ACCCTTTAAAAATCTTTTAAAAATCTTTGTAAATCTTTTAAAGCCCTTTGAAATCCCTTGTAAATATTTTAAAATCTTTTAAAATTCCTTGTAAATGTTTTAAACCCTTTTAAA
GATTTGCAAAAGATTTTAAAAGATTTACAAAGGATTTTAAAGGATTTACAATGGATTTTAAAGGGGTTTAAAAGATTTACAAAGGTTTTTTAAAGATTTTTAAAGGGTTTTAAAT

The ideal pattern for A.thaliana is repetition of TAAAAATTTTTA, again, alternation of RRRRR and YYYYY, and complementary symmetry

Before this picture was generated
(Dec. 2012) nobody ever had seen
that the nucleosome sequences
look, indeed, periodical

From the bendability matrices

for the strong nucleosomes:

T AGAGG CCTCT A Lowary and Widom
T AAAAA TTTTT A A.thaliana
T AAAAA TTTTT A C.elegans
T AAAAA TTTTT A H.sapiens
T AAAAA TTTTT A isochores L1, L2, H1 and H2
C GGGGG CCCCC G isochores H3

Y RRRRR YYYYY R common for all

Full size nucleosome DNA bendability matrix (A. thaliana, strong nucleosomes)

Bendability matrix for $[\mathrm{R}, \mathrm{Y}]$ dinucleotides

Full length [R,Y] nucleosome mapping consensus sequence probe (from RR-YY distribution)

Nucleosome positioning pattern

TA
CG
TG
CA
Contact with arginines

AT
GC
AC The rest of the period is
GT
Exposed
occupied by RR (AA,AG,GA,GG) and YY (TT, TC, CT, CC) dinucleotides, in their optimal partial unstacking positions

Strong nucleosomes (SNs) concentrate in centromere regions (A.thaliana)

Maps of columnar chromatin structures

(A)

(B)

(E)

SNs in C. elegans

Mononucleosomes and short columns

(a) Chrom. III, [867,800-868,800]

(b) Chrom. IV, [6,664,700 - 6,665,700]

(c) Chrom. II, [2,666,700 - 2,667,700]

SN columns and clusters

(a) Chrom. I, $[1,660,500 \cdot 1,664,000]$

(c) Chrom. I, [13,609,000 - 13,616,000]

(d) Chrom. V, [18,691,500 - 18,698,500]

The dinucleotide stacks are placed in such positions within the nucleosome DNA period to ensure best possible bending.

The better the bending - the stronger the nucleosome.
But the bulk of the nucleosomes are only marginally stable.
Only a fraction of properly positioned dinucleotides is present in any given nucleosome DNA sequence.

In average 40 bases in each nucleosome DNA contribute to the nucleosome positioning message. This amounts to
$\sim 20 \%$ of genome occupied by the chromatin code
Triplet code takes $\sim 3 \%$ of genome
These are two major codes in the genomic sequences, and they do interact as they also overlap

Interaction between
 translation triplet code and

 chromatin code

 chromatin code}

Cohanim, 2006
Eubacteria

Randomizing third positions brings the oscillations down

Fig. 2 Comparison of correlation functions from Eubacteria and Archaea. The functions represent the arithmetic means of WW-correlation functions from 8 eubacterial genomes and 3 archaeal genomes (listed in Table 1). The circles are obtained by nonlinear curve fitting. In order to highlight the difference in the periodicities, arrows are drawn at distances of 11 bp (upper graph) and 10 bp (lower graph).

$$
\begin{aligned}
& \text { H. HERZEL, } \\
& \text { O.WEISS, E.T., } 1998 \text { III1 }
\end{aligned}
$$

Table 1: Periodicities of genomic DNA

| | genome length | | nucleotides | dinucleotides |
| :--- | :---: | :---: | :---: | :---: |
| | | | | |
| Escherichia coli | 4.6 M | 11.0 | 11.0 | |
| Bacillus subtilis | 4.2 M | 11.2 | 11.2 | |
| Synechocystis sp. PCC 6803 | 3.5 M | 11.5 | 11.6 | |
| Haemophilus influenzae | 1.8 M | 11.2 | 11.0 | |
| Helicobacter pylori | 1.7 M | 11.2 | 11.2 | |
| Borrelia burgdorferi | 1.0 M | 10.9 | - | |
| Mycoplasma pneumoniae | 0.8 M | 11.3 | 11.4 | |
| Mycoplasma genitalium | 0.6 M | 11.5 | 11.5 | |
| Archaeoglobus fulgidus | 2.2 M | 10.0 | 10.0 | |
| Methanococcus jannaschii | 1.8 M | 10.0 | 10.0 | |
| Methanobacterium thermo. | 1.8 M | 10.1 | - | |
| | | | | |

Caption We estimate the periods from the correlation functions in the range from 38 to 105 bp via nonlinear curve fitting described in the Methods. We exclude distances below 38 bp to avoid dominance of protein correlations. The middle column presents the periods of correlations of weakly binding nucleotides (A or T) whereas the right column gives the periods of correlations of AA or TT dinucleotides. In two cases (B. b. and M. t.) the dinucleotide correlation functions exhibit no clear periodicities.

```
H.HERZEL,
O.WEISS,
E.T. (1998)
```


THE COLLEAGUES WITH WHOM WE AGONIZED TOGETHER ALL THESE YEARS (1978-2010)
 TO FINALLY REACH THE GOAL:

| Joel Sussman (1978) | Hanspeter Herzel (1998) | M. Kato (2003) |
| :--- | :--- | :--- |
| Thomas Bettecken (1979) | Ivo Grosse (1998) | Amir Cohanim (2005) |
| Galina Mengeritsky (1983) | Olaf Weiss (1998) | Yehezkiel Kashi (2005) |
| Levy Ulanovsky (1983) | Yuko Wada-Kiyama (1999) | Fadil Salih (2007) |
| Roni Wartenfeld (1984) | Kentaro Kuwabara (1999) | Bilal Salih (2007-2014) |
| Jacqui Beckmann (1991) | Yasuo Sakuma (1999) | Idan Gabdank (2009) |
| Ilya Ioshikhes (1992) | Ryoiti Kiyama (1999) | Danny Barash (2009) |
| Alex Bolshoy (1992) | Yoshiaki Ohnishi (1999) | Zakharia Frenkel (2009) |
| Kostya Derenshtein (1996) | Michael Zhang (1999) | Alexandra Rapoport (2010) |
| Mark Borodovsky (1996) | Jiri Fajkus (2001) | Jan Hapala (2010-2014) |
| Dmitry Denisov (1997) | Toshimichi Ikemura (2003) | Vijay Tripathi (2013) |
| Edward Shpigelman (1997) | Takashi Abe (2003) | Reshma Nebhani (2014) |
| Kevin Shapiro (1997) | Simon Kogan (2003) | |

Modulation (fast adaptation) code

MODULATION OF TRANSCRIPTION

Unit / No. of repeats / location / reference

A 20-55 upstream of $A D R 2$ gene of S. cerevisiae Nature 304,652 , 1983
T 11-45 upstream of Dictyostellium actin genes NAR 22, 5099, 1994
T 9-42 Gcn4-activated transcription, his3 gene, yeast EMBO J 14, 2570, 1995
T 10-80 upstream, vaccinia virus late promoters JMB 210, 771, 1989
GT 30-130 CAT constructs, monkey, human cells MCB 4, 2622, 1984
RY 94,144 mouse ADH1 gene, first intron Gene 57, 27, 1987
ACCGA 5-12 UAS1 site of yeast CYC1 gene MCB 6, 4690, 1986
CTTCC 2,3 upstream activator of yeast PGK gene NAR 16, 8245, 1988
AARKGA 2-8 human IFN beta gene, PRDI element Science 236, 1237, 1987; EMBO J 8, 101, 1989
ATCTTTC 15-28 Between promoters P2 and P1 of adhesin genes of H. influenzae, PNAS $96,1077,1999$
AGGGCAGAGC 1-3 mouse •DRE element, •-globin promoter MCB 10, 972, 1990
GGGGCGGGGC 1,2 Sp1 sites, adenovirus early promoter JBC 266, 20406, 1991
CAAAAATGCC 9-35 transient expression of galactokinase BBRC 180, 1273, 1991
$11 \mathrm{bp} 1-4$ mouse metallothionein I gene, MREa element, MCB 5, 1480, 1985
$12 \mathrm{bp} 1,3$ bovine papilloma virus, E2 site EMBO J 7, 525, 1988
12 bp 1-4 human IFN beta gene, PRDII element EMBO J 8, 101, 1989
$12 \mathrm{bp} 1-6$ MRE element of mouse metallothionein-I promoter, Nature 317, 828, 1985
14 bp 1-4 soybean heat shock promoter element JMB 199, 549, 1988
$14 \mathrm{bp} 1-4 \mathrm{C}$. elegans $H S$ element in mouse cells MCB 6, 3134, 1986
14 bp 1-4 Drosophila HS element in yeast cells NAR 14, 8183, 1986
14 bp 1-5 cell-cycle dependent transcription of the yeast HO gene, Cell 42, 225, 1985
$16 \mathrm{bp} 1,5$ human oligoA synthetase gene EMBO J 7, 411, 1988
$17 \mathrm{bp} 1,3$ yeast allantoate permease gene, GATAA containing element, MCB 9, 602, 1989
17 bp 1-8 SV40-rat construct, preproinsulin gene MCB 8, 2737, 1988
$17 \mathrm{bp} 1,5$ yeast allantoate permease gene MCB 9, 602, 1989
$18 \mathrm{bp} 1-5$ immediately early genes, human cytomegalovirus, JV 63, 1435, 1989
$31 \mathrm{bp} 1-8 \mathrm{NF}-\bullet \mathrm{B}$ factor binding site upstream of mouse beta-globin gene, JMB 214, 373, 1990
$32 \mathrm{bp} 1,2$ yeast allantoate permease gene MCB 9, 602, 1989
32 bp 1,2 immediately early genes, human cytomegalovirus, JV 63, 1435, 1989
$32 \mathrm{bp} 1-4$ upstream of the SUC2 gene of S. cerevisiae, MCB 6, 2324, 1986
$39 \mathrm{bp} 1,2$ copper-induced transcription of yeast copper-metallothionein gene, MCB 6, 1158, 1986
57 bp 1-4 H element, Ty1 transposon, yeast CYC7 MCB 8, 5299, 1988
60 bp 1-3 cauliflower mosaic virus activator EMBO J 7, 1589, 1988
113 bp n expression of a reporter gene Gene 189, 13, 1997
122 bp 1-4 maize streak virus activator element EMBO J 7, 1589, 1988
240 bp n rDNA spacer in Drosophila NAR 10, 7017, 1982; PNAS 85, 5508, 1988; MCB 10, 4667, 1990

ENHANCERS

Unit / No. of repeats / location / reference
12 bp 1-3 SV40 constructs expressing E2 peptide of bovine papilloma virus, EMBO J 7, 525, 1988
12 bp 2-6 ftz-dependent enhancer, Drosophila Nature 336, 744, 1988
14 bp 1,2 phorbol ester induction, HIV, R region MCB 7, 3994, 1987
16 bp 1,5 interferon-responsive, tk gene constructs, transfected monkey cells, EMBO
J 7, 1411, 1988
17 bp 1,2 yeast upstream activator sequence, in HeLa cells, Cell 52, 169, 1988
17 bp 1,4 CRE enhancer of human vasoactive intestinal peptide gene, PNAS 85, 6662, 1988
18 bp 1,2 cAMP responsive, human glycoprotein hormone, MCB 7, 3759, 1987
20 bp 4,8 core of SV40 enhancer, constructs JMB 201, 81, 1988
30 bp 11-21 EBV transcription and replication MCB 6, 3838, 1986
50 bp 1-6 herpes virus saimiri JMB 201, 81, 1988
57 bp 1-4 H element of Ty1 transposon, CYC7 gene MCB 8, 5299, 1988
60 bp n rDNA spacer, X. laevis Cell 35, 449, 1983
68 bp 1-3 BKV transcription Science 222, 749, 1983
72 bp 1-3 SV40, constructs JV 55, 823, 1981
81 bp n rDNA spacer, X. laevis Cell 35, 449, 1983
99 bp 1,2 murine Akv retrovirus JV 64, 3185, 1990
109 bp 1,2 MCF virus, oncogenicity JV 63, 1284, 1989
140 bp 1-13 mouse rRNA gene spacer PNAS 87, 7527, 1990

OTHER ACTIVITIES

Unit / No. of repeats / location / reference
A 17-20 promoter region, Mycoplasma surface antigen variation, EMBO J 10, 4069, 1991
C 8-44 5'-UTR, virulence of mengovirus JV 70, 2027, 1996
GT n recombination, mouse somatic cells MCB 6, 3948, 1986
GT n recombination, Rec A binding JMB 273, 105, 1997
GT n meiosis, yeast MCB 6, 3934, 1986
CG n recombination, mouse somatic cells MCB 6, 3948, 1986
AAG 2-8 exon M2 of mouse IG• gene, enhancement of splicing, MCB 14, 1347, 1994
GACA 22-35 phenotypic switching of a lypopolysaccharide epitope, PNAS 93, 11121, 1996
AAGTGA 4-8 upstream inducible element, human beta interferon gene, JV 64, 3063, 1990
GAAAGT 2,4 mediates virus-inducible transcription of human interferon genes, PNAS 88, 1369,
1991
ATAGTAAA 13,17 iteron in plasmid pAD1 of E. faecalis, mating response to sex pheromone, J Bact 177, 5453, 1995
CTGAGGTCAA 1-5 F2 half-element of chicken lysozyme silencer S-2.4 kb, Cell 61, 505, 1990 14 bp 1-5 3'-terminal UTR, tobacco vein mottling virus, disease symptom severity, PNAS 88, 9863, 1991
17 bp 1-8 modulation of translation, rat preproinsulin, MCB 8, 2737, 1988
$31 \mathrm{bp} 1-6$ packaging of Adenovirus Type 5 DNA JV 64, 2047, 1990
40 bp 1,2 polyoma virus expression JV 62, 3896, 1988
46 bp 1-4 virus-responsive element of IFN•1 promoter, induced expression, Cell 50, 1057, 1987
48 bp 2,5 transforming activity of a retrovirus NAR 26, 4868, 1998
68 bp 1-3 BK virus, transforming activity JV 55, 867 \& 823, 1985
240 bp 13-350 modulation of meiotic drive, Rsp of $S D$ system of Drosophila Nature 332 , 394 , 1988; Cell 54, 179, 1988
TG 20-30 regulation of period in circadian rhythm Science 278, 2117, 1997
SKQPFRK 2-7 chloroplast ribosomal protein S18 FEBS Let 279, 190, 1991
YSPTSPS 9-26 yeast RNApolII, modulation, response to enhancer signals Nature 347, 491, 1990;
MCB 8, 321, 1988
YSPTSPS 3-78 mouse RNApolII, modulation MCB 8, 330, 1988
12 aa 7-11 Mycoplasma surface antigen variation EMBO J 10, 4069, 1991
31 aa 3,4 stage- and tissue specificity of human microtubule-associated protein tau, EMBO J
8, 393, 1989
34 aa 0-17 plant resistance to bacterial spot disease, Nature 356, 172, 1992
42 aa 3-13 segment polarity armadillo gene, Drosophila, phenotypic series, Cell 63, 1167, 1990
53 aa 11-50 kringle IV, processing and secretion of apolipoprotein (a), JBC 271, 32403, 1996
82 aa 1-9 alpha C protein, Streptococci, modulation of host immunity, PNAS 93, 4131, 1996

Diseases with repeats in non-coding regions

this is
GCU repeat,
but also CUG repeat,
UGC repeat,
AGC repeat,
GCA repeat,
and CAG repeat

Diseases with repeats in non-coding regions

Polyglutamine diseases (polyCAG = polyGCU)

n in norm/pathology

| DRPLA | (dentatorubropallidoluysian atrophy) | $6-35 / 49-88$ |
| :--- | :--- | :--- |
| HD | (Huntington's disease | $10-35 / 35+$ |
| SBMA | (spinobulbar muscular atrophy) | $9-36 / 38-62$ |
| SCA1 | (spinocerebellar ataxia Type 1) | $6-35 / 49-88$ |
| SCA2 | | $14-32 / 33-77$ |
| SCA3 | | $12-40 / 55-86$ |
| SCA6 | | $4-18 / 21-30$ |
| SCA7 | | $7-17 / 38-120$ |
| SCA17 | $25-42 / 47-63$ | |

from Wikipedia

Tandem repeat expansion diseases and disorders

Repeat/Copy number \boldsymbol{n} range/Location/Disease or disorder/References

There is only few percent difference between genomes of human and chimpanzee. Mostly in copy numbers of simple repeats.

Humans are retuned monkeys

PROTEOMIC CODE (PROTEIN SEQUENCE MODULES)

Two related sequences, aligned

33\% match

Q816J5

DVNLPKFDGFYWCRQIRHESTCPIIFISARAGEMEQIMAIESGADDYITKPFHYDVVMAKIKGQLRR
 DVNLPGIDGWDLLRRLRERSSARVMMLTGHGRLTDKVRGLDLGADDFMVKPFQFPELLARVRSLLRR Q7DCC5

```
CPIIFISARAGEMEQIMAIE Q816J5 Two-component response regulator B. cereus
    |||||||| | | ||||
VPIIFISARDSDMDQVMAIE Q97IX4 Response regulator C. acetobutylicum
|| ||||||| | | | |
VPVIFISARDADIDRVLGLE O32192 Transcr. regulatory protein cssR B. subtilis
|| | |||| |||||||
VPILFLSARDEEIDRVLGLE Q89D26 Two-component response regulator B. japonicum
    || | || || | |||||
IPIIMLTARSEEFDKVLGLE Q8R9H7 Response regulators Th. tengcongensis
    | |||||| ||| |||
SRIMMLTARSRLADKVRGLE Q88RT2 heavy metal response regulator Ps. Putida
    | |||| || ||||||
ARVMMLTGHGRLTDKVRGLD Q7DCC5 Two-component response regulator Ps. Aeruginosa
```

Q816J5 Two-component response regulator
DVNLPKFDGFYWCRQIRHESTCPIIFISARAGEMEQIMAIESGADDYITKPFHYDVVMAKIKGQLRR

DVNLPGIDGWDLLRRLRERSSARVMMLTGHGRLTDKVRGLDLGADDFMVKPFQFPELLARVRSLLRR
Q7DCC5 Probable two-component response regulator

No-match relatives

```
LEVALALSQADIIVRDALVS Q8UBQ7 Uroporphyrin-III C-methyltransferase
| | || ||| || ||||
LHAANALRQADVIVHDALVN Q92P47 probable Uroporphyrin-III C-methyltransferase
| | | |||||||||
LRAQRVLMEADVIVHDALVP Q8YEV9 Uroporphyrin-III C-methyltransferase
B. melitensis
||| | |||||||||||||
LRAHRLLMEADVIVHDALVP Q98GP6 Siroheme synthase (precorrin methyltransferase)
| ||| |||||
LKGQRLLQEADVILYADSLV Q8DLD2 Precorrin-4 C11-methyltransferase
    |||| ||||| || |||
IKGQRIVKEADVIIYAGSLV Q8REX7 Precorrin-4 C11-methyltransferase
    |||| ||||||||
VKGQRLIRQCPVIIYAGSLV Q88HFO Precorrin-4 C11-methyltransferase
| | || ||| ||||||
VRGRDLIAACPVCLYAGSLV Q8UBQ5 Precorrin-4 C11-methyltransferase
A. tumefaciens
Rh. meliloti
Rh. loti
S. elongatus
F. nucleatum
Ps. putida
A. tumefaciens
```

Q8UBQ7 methyltransferase
HVWLAGAGPGDVRYLTLEVALALSQADIIVRDALVS
-|---|||||-----|-------------------TVHFIGAGPGAADLITVRGRDLIAACPVCLYAGSLV Q8UBQ5 methyltransferase

No-match relatives

Methyltransferases

```
LEVALALSQADIIVRDALVS Q8UBQ7
| | || ||| || |||
LHAANALRQADVIVHDALVN Q92P47
| | |l|l||l||
LRAQRVLMEADVIVHDALVP Q8YEV9
|I| | |||||||||||
LRAHRLLMEADVIVHDALVP Q98GP6
| ||| ||||
LKGQRLLQEADVILYADSLV Q8DLD2
    |||| |||| || |||
IKGQRIVKEADVIIYAGSLV Q8REX7
    |||| |||||||
VKGQRLIRQCPVIIYAGSLV Q88HFO
| | || ||| |||||
VRGRDLIAACPVCLYAGSLV Q8UBQ5
```


No-match relatives

LEVALALSQADIIVRDALVS

VRGRDLIAACPVCLYAGSLV
Q8UBQ5

To be related

the sequences

do not have to be similar

(upto even complete mismatch)

Existing most advanced

 sequence alignment techniques (e. g. BLAST)would not be able to qualify such fully dissimilar sequences as relatives
unless many intermediate sequences are analyzed
(that amounts to a whole research project)

One can make long walks

from fragment to fragment in the

formatted protein sequence space

(sequence fragments of the same length, 20 residues, gathered from all or many proteomes)

Pair-wise connected matching fragments make also

networks

WALK

NETWORK

Frenkel, 2006

60\% match threshold networks:

320,000 proteins from 120 prokaryotes, $\sim 100,000,000$ fragments
The largest (monster) network 9,368,905 sequence fragments ($\sim 10 \%$ of all)
Next largest $\quad 2,535$ fragments
Networks of sizes 120 to 2,535 fragments (several thousand, 3.8\% of all fragments)
Small networks cover 86% of the space
35% of fragments are single, no relatives

Number of different fragments in complete (random) space:
$20^{20} \sim 10^{26}$

Number of fragments in complete natural space:
$10^{7} \cdot 3 \cdot 10^{4} \cdot 300 \sim 10^{14}$

Probability that a given fragment in natural space
is randomly generated is $10-12$

Networks of fragments of aa-tRNA synthetases

at various thresholds of sequence match

Network of GTP binding proteins

Sequence fragments with the same function are found in the same network

```
1mh1_ c.37.1.8 Rac (GTP-
binding)
{Human (Homo sapiens)}
2 26
QAIKCVVVGDGAVGKTCLLISYTTN
    | || |
AGDVISIIGSSGSGKSTFLRCINFL
31
5 5
1b0ua_ c.37.1.12 (A:) ATP-
binding subunit
of the histidine permease
{Salmonella typhimurium}
```



```
1 Putative peptidoglycan bound protein
2 Collagen adhesion protein
3 Ribosomal protein L11
4 ~ P e n i c i l l i n - b i n d i n g ~ p r o t e i n ~ 2 x ~
5 Penicillin-binding protein 1
6 Penicillin binding protein 2A
7 \text { D-alanyl-D-alanine carboxypeptidase}
```

8 cytochrome
9 Beta-Lactamase
10 Mannitol-1-phosphate 5-dehydrogenase
11 glutaminase
12 Beta-lactamase
13 Esterase EstB

Fragments of the same network have, essentially, the same structure. Periferal fragments may be different

Paisk

Two alternative structures with the same sequence

Lab of P. N. Bryan, 2009

Matches of the nucleotide-triphosphate-binding (p-loop) prototype in crystal structures.

A

ATP Synthase
P-loop containting nucleoside hydrolase fold, 1sky

GTP Binding protein P-loop containing nucleoside hydrolase fold, 1ni3

PEP carboxykinase PEP carboxykinase-like fold, 1ii2

B

$$
\begin{array}{ll}
\text { PDB domain } & \text { SCOP } \\
\text { 1sky E 83-356 } & \text { c.37.1.11 } \\
\text { 1ni3 A 11-306 } & \text { c.37.1.8 } \\
\text { 1ii2 A 201-523 } & \text { c.91.1.11 } \\
\text { 2d7v A 7-161 } & \text { d.227.1.1 }
\end{array}
$$

KI GLF'GGAGVGKTVLI IQELIHNIAQ'EH KTGIVGMPNVGKSTFFRA I TKSVLGNP VTVFFGLSGTGKTTLSADPHRNL I GDD AVGILGKNSKGKTSVTKVVLRPQVVFS

Goncearenco A, Berezovsky I N Bioinformatics

New definition of sequence relatedness:

fragments of the same network are relatives

| | Decay of the initial sequence pattern (bottom up) | Decay of the final sequence pattern (bottom up) | Every two nearest neighbors share at least 60\% identity |
| :---: | :---: | :---: | :---: |
| 1 | LEDAIKAAKAGADI IMLDNM | LEDAIKAAKAGADI IMLDNM | LEDAIKAAKAGADIIMLDNM |
| 2 | PEDAPRAADAGADIVLLDNM | PEDAPRAADAGADIVLIDNM | PEDAPRAADAGADIVLLDNM |
| 3 | PEAAERAAATGADGVGLLRM | PEAAERAAATGADGVGLLRM | PEAAERAAATGADGVGLLRM |
| 4 | PEAARKAAATGADGVGLLRT | PEAARKAAATGADGVGLLRT | PEAARKAAATGADGVGLLRT |
| 5 | PADARAARAFGAEGIGLCRT | PADARAARAFGAEGIGLCRT | PADARAARAFGAEGIGLCRT |
| 6 | PTDFKKALLFGAEGVGLCRT | PTDFKKALLFGAEGVGLCRT | PTDFKKALLFGAEGVGLCRT |
| 7 | PLDI IKALVLGAKAVGLSRT | PLDIIKALVLGAKAVGLSRT | PLDIIKALVLGAKAVGLSRT |
| 8 | GTDIIKALAIGANLVGLGRM | GTDIIKALAIGANLVGLGRM | GTDIIKALAIGANLVGLGRM |
| 9 | GTDIVKAIAAGADLVGIGRL | GTDIVKAIAAGADLVGIGRL | GTDIVKAIAAGADLVGIGRL |
| 10 | SGDIAKAIAAGADAVMLGSL | SGDIAKAIAAGADAVMLGSL | SGDIAKAIAAGADAVMLGSL |
| 11 | IGLIEKAKAEGADAVILGCT | IGLIEKAKAEGADAVILGCT | IGLIEKAKAEGADAVILGCT |
| 12 | KRLVEIAKLEGADAICHGCT | KRLVEIAKLEGADAICHGCT | KRLVEIAKLEGADAICHGCT |
| 13 | ARIVEIAKACGADAIHPGYG | ARIVEIAKACGADAIHPGYG | ARIVEIAKACGADAIHPGYG |
| 14 | EKIIAAAKASGAEAIHPGYG | EKIIAAAKASGAEAIHPGYG | EKIIAAAKASGAEAIHPGYG |
| 15 | EKLLAVAKRSGADAVHPGYG | EKLLAVAKRSGADAVHPGYG | EKLLAVAKRSGADAVHPGYG |
| 16 | EKALAALESSGADAVMIGRG | EKALAALESSGADAVMIGRG | EKALAALESSGADAVMIGRG |
| 17 | LKARAVLDYTGADALMIGRA | LKARAVLDYTGADALMIGRA | LKARAVLDYTGADALMIGRA |
| 18 | KKAFEVLQITQADGLMIGRA | KKAFEVLQITQADGIMIGRA | KKAFEVLQITQADGLMIGRA |
| 19 | QNAKEVYKITKCDGLMIGRA | QNAKEVYKITKCDGIMIGRA | QNAKEVYKITKCDGLMIGRA |
| 20 | QNAKEILGIDSVDGLLIGSA | QNAKEILGIDSVDGLLIGSA | QNAKEILGIDSVDGLLIGSA |
| 21 | SNAKELMGVANVDGALIGGA | SNAKELMGVANVDGALIGGA | SNAKELMGVANVDGALIGGA |
| | SNAAELFAQPDIDGALVGGA | SNAAELFAQPDIDGALVGGA | SNAAELFAQPDIDGALVGGA |

Careful with consensus!

The words
COOKY
MANGO
MELON
HONEY
SWEET
all suggest something sweet or sweet-sour and could be considered, thus, as recognition sequences for the 'sweet' quality. Their consensus sequence, however, conveys a rather different message:
MONEY

```
prima
prime flack
pride flock
bride frock
bribe crock
tribe crack
trice track
trace------trace
trade truce
grade truck
    probe
    prone------prone
    prune phone
graze trunk------trunk
grape
grace
grate
grave
crave
crate
crane
craze
```


Every fragment

 of the precalculated space is tagged (protein, species)It is also uniquely located in it s family network.

The size of the network says how many relatives the fragment has

Thus, one can take a sequence and for all fragments of it find their networks and plot the sizes

Modules of TIM-barrell protein

Modules of chemotaxis protein che Y

Modules of cytidylate kinase

Intact elongation factor, Chain A, E. Coli

ATP-binding component of high-affinity phosphate-specific transport system, E. Coli

cysteine tRNA synthetase, E. Coli K12

Cell division protein ftsH, E. Coli

RNA polymerase beta subunit, Rhodopseudomonas palustris CGA009

DNA topoisomerase,
Rhodopseudomonas palustris CGAOO9

GTP-binding protein,

Ham ophilus influenza Rd KW20

Heat shock protein DnaK
Fusobacterium nucleatum subsp. polymorphum

ClpA, ATP dependent protease, chaperonin Nitrosom onas europara ATCC 19718

protein translocase subunit SecA
Heliobacillus mobilis

ABC transporters

(... GPS S LTA S LSG S IYV ...)

(32-72) GPSGSGKTTLL (29-41) MVFQNYALFPHLTALENV (31-42) QLSGGQQQRVAIARAL (6 LLADEPTSALD (21-22) IYVTHDQ (28-263) COnSensus

The consensus sequences of the modules are built from overlapping motifs that appear in at least half of the 15 representative species. There are representatives of the above cassette in every species. Thus the ABC cassette as outlined above is OMNIPRESENT

Proteases (cell division proteins FtsH)

(... GPP FVE FID DER RPG ...)

GPP (Aleph)

FVE

FID

(197) LLVGPPGTGKTLLARAVAGEA (7) SGSDFVELFVGVGAARVRD (9) PCIVFIDEIDAVGR (10) 2CEA
(146-463) LLVGPPGTGKTLLARAVAGEA (7) SGSDFVEMFVGVGASRVRD (9) PCIIFIDEIDAVGR (7-11)

- another example of the omnipresent cassette

Omnipresent cassette of RNA polymerases

(... FAT NEK S NLL S S VLL NAD ...)

(529) VDGGRFATSDLNDLYRRLINRNNRLK (12) RNEKRMLQEAVDAL (27) GKQGRFRQNLLGKRVDYSGRSVIVVGP 2A6E
(224-518) LDGGRFATSDLNDLYRRVINRNNRLK (12) RNEKRMLQEAVDAL (25-27) GKQGRFRQNLLGKRVDYSGRSVIVVGP consensus

VLL NAD

(62) KVVLLNRAPTLHRLGIQAF (18) AFNADFDGDQMAVH (776) 2A6E
(59-84) HPVLLNRAPTLHRLGIQAF (18) AFNADFDGDQMAVH (131-961) consensus

The maps of the modules show as well the "silent" regions

- least conserved, least related to anything and, perhaps, not very much loaded functionally.

These would be of not much interest for the sequence alignment community

The silent modules appear to maintain 3D structural relationships between functionall modules

When long sequences are compared it is worth first to identify which segments are more informative.

This is done by mapping of the modules.

13

The list of modules revealed in the map for a given protein sequence,
with reference to corresponding (characterized) networks of the precalculated sequence space provides full annotation of the protein

V. Alva et al., PROTEIN SCIENCE 19, 124-130, 2010
"...modular peptide fragments of between 20 and 40 residues that co-occur in the connected folds
in disparate structural contexts.
These may be
descendants of an ancestral pool of peptide modules..."
V. Alva et al., PROTEIN SCIENCE 19 , 124-130, 2010

What are the protein modules:

Their Sequences are represented by networks
in the protein sequence space -
separate network (or group of related networks) for each module.
Each module has its own unique Structure.
Typically, these are closed loops of the contour length 25-30 residues.
Apart from general activity ascribed to the protein that harbors given module, each module type has its own specific function.

Individual modules even of the same type are sequence-wise often different. Their EVOlution from ancestral prototypes may be traced along walks and networks in the sequence space.

Proteins are made
from standard size modules of many types.

Each type has its unique structure and function, but highly variable sequence

All current protein science turns inside out: Protein world is world of modules

Every breakthrough that opens new vistas also removes the ground from under the feet of other scientists.

The scientific joy of those who have seen the new light is accompanied by the dismay of those whose way of life has been changed for ever.

Fersht A, Nature Rev Mol Cell Biol, 2008

Examples of evolutionary paths

MOST COMMON PROTEIN SEQUENCE MODULES (PROTOTYPES)

```
Aleph GEIVLLVGPSGSGKTTLIRAIAGLLGPDGG
Beth LSGGQRQRVAIARALALEPKLILIDEPTSALD
Gimel DVVVIGAGGAGLAAALALARAGAKVVVVE
Dalet RRGIGMVFQEYALFPHLTVLENVALGL
Heh PVIMLTARGDEEDRVEALLEAGADDYLTKPF
Vav LLGLSKKEARERALELLELVGLEEKADRYP
Zayin LLLKLLKELGLTVLLVTHDLEEA
```

The underlined motifs are omnipresent

KVALVGRSGSGKTTVTSLLM

FIAVEGIDGAGKTTLAKSLS

$$
\begin{array}{r}
\text { GxxxxGKT }-\quad \text { Walker A motif } \\
\text { (NTP binding) }
\end{array}
$$

Omnipresent 6-9 mers of 15 prokaryotes from different phyla

ALEPH ATP/GTP binding

```
HVDHGKTTL
        GPPGTGKT
        GHVDHGKT
            GSGKTTLL
IDTPGHV
    GPSGSGK
        PTGSGKT
        NGSGKTT
            GKSTLLN
        SGSGKT
        TGSGKS
        PGVGKT
        PNVGKS
            GVGKTT
            GTGKTT
            DHGKST
                GKTTLA
                GKTTLV
                        KSTLLK
```

BETH ATPases of ABC transporters

QRVAIARAL
LSGGQQQRV
22
23 TLSGGE

Other omni:

24 FIDEID
25 KMSKSL
26 WTTTPWT
27 NADFDGD

Omnipresence is a new measure of sequence conservation. These elements are the most conserved ones, coming, presumably from last common ancestor

ALEPH and BETH
 reconstructed
 from overlapping omnipresent motifs turn out to be relatives, though they do not match:

| IDTPGHVDHGKTTLLN | ALEPH |
| :---: | :---: |
| I | |
| TLSGGQQQRVAIARAL | BETH |

They both belong to 10% monster network.
All 27 omnipresent elements belong to the same network

10\% MONSTER network (107 fragments)

Sequence space based evolutionary tree of omnipresent elements

TO CONCLUDE THE CHAPTER ON NETWORKS:
I. Protein sequence characterization via networks in the sequence space does not require gap penalties, nor substitution matrices, nor statistics of alignment
II. The networks in the sequence space represent protein modules. Each sequence fragment belongs to only one specific network, and, thus, is given an unequivocal annotation.
III. Each protein can be described as linear combination of several different modules, and presented as word in the alphabet of the modules - the proteomic code

Paths from Aleph to Beth and back

```
- 1 GEFVAIVGPSGCGKSTLLRL Q825G5 GEFVAIVGPSGCGKSTLLRL Q825G5
- 2 GESLALTGESGSGKSTLLLHL Q7CP38 GEVVVIIGPSGSGKSTLLRS Q97RJO
- 3 AQTIALIGESGSGKSTLLLGI Q8ZCB4 QVVVVGAGPSGSTVSALLKS Q87R97
- 4 ATLAALIGAGGLGKLILLGI Q813M6 DVVVVGAGPSGSSAARYLSE 066509
5 AVIAALIGAGGFGALVFQGL Q8X670 DVVVIGAGPGGYVAAIRASQ Q9A7J2
- 6 VVLAGLVGAGGLGAEVTRGL Q8U8Y4 DAVIIGGGPGGYVCAIKLAQ Q9WYL2
- 7 VVGGGVVGAGTALDAVTRGL Q82DH4 FAVITGGGPGAMEAANKGAQ Q8KC62
- 8 VVGGGSTGAGVARDLAMRGL Q9HNS4 LTVATGGGPGAMEAANLGAY 086748
9 VVGGGFTGQSAALHLAEGGL Q8UCD8 I
\INAIGGBGAMANLGAY 086748
VVGGGFTGQSAALHLAEGGL Q8UCD8 LDVGTGSGVLAMAAAKLGAA Q9RU72
LCGGGFTGQSQALRLAIARA Q8A0Z5 LDLGTGSGALAVHAARLGAR Q826J9
LSGGERIALSIALRLAIAKA Q97WHO LDTGIMSGADIVAAIALGAR Q9CBF2
LSGGQRRALGIALALASNPE Q9YBQ1 MDGGIRSGQDVLKAVALGAR Q8UD10
LSGGQRQRVAIARALALDPD Q82BU6 VSGGIRSGADVAKALALGAD Q8U870
- }14\mathrm{ ASGGMRDGVMMAKALAMGAS O58893
- 15 LSGGMRQRVMIAIALACGPD Q89KL2
- 16 LSGGQRQRVAIARALALDPD Q82BU6
- C
D
- 1 GEFVAIVGPSGCGKSTLLRL Q825G5
- 2 GQVVVVLGPSGSGKSTLCRT Q8RQL7 G
- 3 GQVVMVTGAGGSIGSELCRQ Q9HZ86 N
    RKAFVTGGAGGIGSETCRQ Q9KCM1 IHLVNLSGPAGSGKTILALA Q887P5
    GRVAFVTGGAGGIGRATAER Q8UA89 GHLQSASGPLGLMKTILLALR 050436
    GKTAFITGGGQGIGLACAEA Q89QA5 GHMDAAAGIGGLIKTVLALR Q8U9Q4
    LVTGANTGLGQGIALALAEA Q8PE31 GHTGGAAGIAGLLKAVLAIE O06586
    LVTGANKGIGLAIARQLGAA Q7CP30 GRTGGWAAIAGLLAAIGATV Q98BE5
    LVTGSSQGIGAAIAAGLARA Q9RK29 GSRGIGAAIARRLAADGAHV Q8XT12
    SACGSSSGSGAAVAAGLAPL Q9A5H4 ASRGIGKAIAEVAARDGAPV Q92PY2
10 SACGSSSGSGA, (PGVVAAGLVPV Q8UAX4 SSGKMGYAIAEVAANLGADV Q819T8
• 11 LPGGSSSGAGVVVAAGLVPV Q8UAX4 SSGKMGYAIAEVAANLGADV Q819T8
- 12 ISGGSSGGSAVAVALGLVDV Q975DO SSGKMGYAVAQVARELGATV Q88WL5
- 13 LSGGESFMAALALALGLSDV Q87HE3 SSGNHAQAVALAARELGTTA Q9XAA4
- 14 LSGGESFIAALALALSLAEV Q830T3 SSGNHAQGVALAARLHGIPA Q8UBW5
- 15 LSGGMIKRAALARALSLDPD Q8UEV8 VSGGQAQRVALALALAGTPA Q9EWP7
- 16 LSGGQRQRVAIARALALDPD Q82BU6 LSGGQRQRVAIARALALDPD Q82BU6
```


GENOME SEGMENTATION CODE

"The proteins... can, with regard to molecular weight, be divided into four subgroups... The molecular masses characteristic of the three higher subgroups are as a first approximation - derived from the molecular mass of the first subgroup by multiplying by the integers..."

The Svedberg
Mass and size of protein molecules
Nature 123, 871 (1929)
~ 160 aa unit (Svedberg, 1937)
"...proteins of molecular weight greater than about 20000 are often built up not as a single unit but by a combination of two or three large substructures. This finding suggests that a 3D structure based on the principle of a polar exterior surrounding a hydrophobic core can be conveniently achieved with a polypeptide molecular weight of about 10000-16000."

B. W. Matthews et al. (P. Sigler)
Nature New Biology
238, 37, 1972

TYPICAL FOLDS

C.A.Orengo, D.T. Jones, I.M. Thornton

Nature $372,631,1994$

$$
\begin{array}{ll}
\text { R.B.Russel, G.J.Barton } & \text { aw. size } 124 \text { aa } \\
\text { JMB 244, 332, 1994 } & (90-1609 a)
\end{array}
$$

Proc. Natl. Acad. Sci. USA 91 (1994)

Fig. 4. Components of prokaryotic protein length distribution. Smoothed distributions (running window of 50 aa) are shown for groups of proteins that are major contributors to the peaks indicated (I-III).

Fig. 2. Components of eukaryotic protein length distribution. Smoothed distributions (running window of 50 aa) are shown for groups of proteins that are major contributors to the peaks indicated (I-IV).

The Lord Of The Rings

Three rings for the Elven-kings under the sky, Seven for the Dwarf-lords in their halls of stone, Nine for Mortal Men doomed to die,
One for the Dark Lord on his dark throne.
J. R. R. Tolkien

Pre-genomic, pre-recombination stage

Pre-genomic, recombination stage

Early genomic stage

"Evolution may have proceeded largely, rather than periferally, through extrachromosomal elements"

D. Reanney

Bact. Rev. 40, 552, 1976

One striking case of overlapping codes

Triplet extension patterns

 for $A+T$ rich prokaryotic genomes| species | G+C
 content | $\begin{array}{cc} & \text { extension } \\ \% \quad \text { motif } \end{array}$ |
| :---: | :---: | :---: |
| F. nucleatum | 27.2 | [(a)t] (A) (T) [(a) t] |
| N. equitans | 31.6 | (ta)t(A) t(at) |
| " | | (at)a (T) a (ta) |
| S. solfataricus | 35.8 | [(t)a]ttt (A) (T) [(a) (t)] |
| T. denicola | 37.9 | [(a)t] (A) (T) [a(t)] |
| C. pneumoniae | 40.0 | [g(a)]G(A) [g(a) |
| - " - | | [(t) c] (T) C [(t) c] |
| M. acetivorans | 42.7 | [g(a)] G (A) (T) C [(t) c] |
| A. aeolicus | 43.3 | [gg (a)] gG (A) [gg (a)] |
| - " - | | [(t) cc] (T) Cc[(t) cc] |
| B. subtilis | 43.5 | [g(a) (t)] G (A) (T) C [(a) (t) c] |
| T. maritima | 46.2 | (gaa) G(A) [g(a)] |
| - " - | | [(t) c] (T) C (ttc) |
| D. ethenogenes | 48.9 | $(\mathrm{cggc}) \mathrm{cggc}(\mathrm{T}) \mathrm{Cagccg}(\mathrm{gccg})$ |
| consensus | | $\mathrm{G}(\mathrm{A})(\mathrm{T}) \mathrm{C}$ |

CGAAAATTTTCG
same as in eukaryotes!:

What this periodical motif codes for in prokaryotes?

```
(GAAAATTTTC) (GAAAATTTTC) . . . .
    AAAATTTTC) (GAAAATTTTC) (G....
    AAATTTTC) (GAAAATTTTC)(GA....
```

GAA AAT TTT CGA AAA TTT TCG AAA ATT TTC glu asn phe arg lys phe ser lys ile phe

AAA ATT TTC GAA AAT TTT CGA AAA TTT TCG lys ile phe glu asn phe arg lys phe ser

AAA TTT TCG AAA ATT TTC GAA AAT TTT CGA lys phe ser lys ile phe glu asn phe arg

$$
\begin{array}{cc}
\text { non-polar } & \text { polar } \\
\text { amino acids } & \text { amino acids }
\end{array}
$$

ala arg
gly
ile
leu
met
phe
pro
val
arg
asn
asp
cys
glu
gln
his
lys
ser
thr
trp
tyr

Our pattern shows alternation of polar and non-polar residues, with the period 3.5 residues

NF kappaB recognition sequences (NF kappaB is the heaviest duty transcription factor)

| IL-1 β-kB | GGGAAAA TCC | T |
| :---: | :---: | :---: |
| TNF α | GGGAAAG CCC | C |
| Urokinase | GGGAAAG TAC | C |
| E-selectin (PD3) | GGGAAAG TTT | C |
| Ifn-B | GGGAAA TTCC | C |
| Lymphotoxin | GGGAAG CCCC | C |
| TCR- β | GGGAGA TTCC | C |
| PRDII | GGGAAA TTCCT | T |
| GCR | GGGGGg CACC | T |
| ICAM1 | TGGAAA TTCC | H |
| кB-33 | TGGAAA TTTC | H |
| IL-2 | AAGAA TTTCC | H |
| GM-CSF CK1 | AGAAA TTCC | C |
| G-CSF CK1 | AGAAA TTCC | C |
| IL-2 CD28RE | AGAAA TTCC | C |
| IL-8 CD28RE | GGAAA TTCC | C |
| GM-CSF | GGGAA CTACC | C |
| TNF α (-655) | GGGAA TTCAC | C |
| IL-2R | GGGAA TTCCC | C |
| H2 | GGGGA TTCCC | C |
| E-selectin | GGGGA TTTCC | C |
| LCAM | GGGGA TTTCC | C |
| Lymphotoxin | GGGGG CTTCC | C |
| GMCSF | TAGAA TCTCC | C |
| IL-3 CD28RE | TGAGA TTCC | C |
| IL-8 | TGGAA TTCCC | H |
| Human P sequence | AAAA TTTCC | C |
| TF | GGAG TTTCC | C |
| Igk | GGGA CTTTCC | C |
| IL-2 | GGGA TTTCAC | C |
| IL-6 | GGGA TTTCC | C |
| Angiotensinogen | GGGA TTTCCC | C |
| TNF α | GGGG CTTTCC | C |
| VCAM | GGGG TTTCCC | C |
| Mouse P sequence | AAA TTTTCC | C |
| IFNY | GAA TTTTCC | C |
| 6-16 ISRE | TCA TTTTCC | C |

GGRAA TTYCC

DNA curvature
Chromatin code
Amphipathic helices
NF kappaB

They all

GAAAATTTTC
GRAAATTTYC
GAAAATTTTC
GGRAATTYCC

Reading only one message, one gets three more, practically GRATIS !

Not only there are many different codes in the sequences,

but also they overlap,

so that the same letters in a sequence may take part simultaneously
in several different messages

Genome inflation code

Occurrence of homopeptides in protein sequences

Three known pathologically expanding ("aggressive") classes of triplets

GCU (GCU, CUG, UGC, AGC, GCA, CAG),
GCC (GCC, CCG, CGC, GGC, GCG, CGG) and

GAA (AAG, AGA, GAA, CTT, TTC, TCT).

They cause neurodegenerative diseases and chromosome fragility

Aggressive amino acids encoded by expanding triplets

L is encoded by CTG (GCT group) and CTT (AAG group),
A - by GCT, GCA (both GCT group), GCC and GCG (GCC group),
G - by GGC (GCC group),
\mathbf{P} - by CCG (GCC group),
\mathbf{S} - by AGC (GCT group) and TCT (AAG group),
E - by GAA (AAG group),
\mathbf{R} - by CGG, CGC (both GCC group) and AGA (AAG group),
\mathbf{Q} - by CAG (GCT group), and
\mathbf{K} - by AAG (AAG group),
F - by UUC (AAG group),
\mathbf{C} - by UGC (GCU group).

Majority of homopeptides are built from aggressive amino acids

| human tripeptides 1st exons | $\begin{aligned} & \text { Score } \\ & \text { (tripept.) } \end{aligned}$ | eukar.
 (Faux
 et al.) | $\begin{aligned} & \text { prokar } \\ & \text { (Faux } \\ & \text { et al.) } \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| 1. L3 | 4552 | 1446 | 70 (5) |
| 2. A3 | 4046 | 5465 (3) | 251 (3) |
| 3. G3 | 2972 | 5002 (5) | 310 (2) |
| 4. P3 | 2258 | 4157 (7) | 217 (4) |
| 5. S3 | 1981 | 5424(4) | 378 (1) |
| $6 . \mathrm{E} 3$ | 1630 | 4334 (6) | 67 (6) |
| 7. R3 | 1145 | 462 | 60 (8) |
| 8. Q3 | 802 | 8022 (1) | 52 (9) |
| 9. K3 | 535 | 1920 (9) | 25 |
| 10. V3 | 414 | 94 | 9 |
| 11. H3 | 273 | 1049 | 32 |
| 12. D3 | 269 | 1554 | 34 |
| 13. T3 | 267 | 2492(8) | 63 (7) |
| 14. I3 | 109 | 34 | 3 |
| 15. F3 | 103 | 175 | 1 |
| 16. C3 | 92 | 38 | 0 |
| 17. N3 | 79 | 6962 (2) | 31 |
| 18. M3 | 34 | 19 | 0 |
| 19. Y3 | 32 | 39 | 4 |
| 20. W3 | 14 | 3 | 0 |
| | 92\% | 75\% | 89\% |

EVOLUTION OF THE TRIPLET CODE

E. N. Trifonov, December 2007, Chart 101

Consensus temporal order of amino acids
UCX CUX CGX AGY UGX AGR
UUY UAX
Gly Ala Asp Val Ser Pro Glu Leu Thr Arg Ser TRM Arg Ile Gln Leu TRM Asn Lys His Phe Cys Met Tyr Trp Sec Pyl

```
| | GAC-GUC
GGA-- |--- |--- - --UCC
GGG-- |--- |---- ---- |--CCC
| | (gag)----- ---- |--GAGG-C\dot{UC}
GGU-- |--- |--- |--- |--- |--- |--- | --ACC
    GCG-- |--- |--- |--- |--- |---- |--- |--CGC
    GCU-- | --- | --- |--- |--- |--- |--- | --- |--AGC
    GCA-- |--- |--- |--- |--- |--- |--- |--- | --- | --ugC
        | | | CCG-- |--- |---|--CGG | | CCU-- |--- |--- |--- |--- |--- |--AGG
                    | CCA-- |--- |---- |--- |---- |--ugg
                    UCG---------- |--- |--CGA | | | |
                    UCG------- |--- |--- |--CGA | | | | |
            | 
            |
```



```
            l lllllll
            . 
                    . 
                    . 
            | \cdot . . GAA-- |------------------------------------------------------------------------------------
                    CUA----------------------- |---- |--- |--UAG
            l lllllll
                    CUUU---------------------------------AAC . |
            . 
            . 
            l lllllll
                    . 
                    CONSECUTIVE ASSIGNMENT OF 64 TRIPLETS
                        UGC
            UGG
                    CODON CAPTURE
aa "age":
```


UGA
"... if variations useful to any organic being ever do occur, assuredly individuals thus characterized will have the best chance of being preserved in the struggle for life; and from the strong principle of inheritance, these will tend to produce offspring similarly characterized"

Charles Darwin, Origin of Species (1859)

Rephrasing (ET):

Individuals with useful variations will self-reproduce
not Life yet (self-reproduction only)

Life
(self-reproduction and variations)

Gly Ala| Val Asp Ser Pro... 1
$\frac{1 \quad \text { GGC--GCC }}{2}$ GUC--GAC

3 GGA---|---------- |-UCC
$4 \mathrm{GGG}---|----|----|----|---\mathrm{CCC}$

Life is self-reproduction with variations

Human Genome Composition
Protein-coding and RNA-coding Non-coding DNA

$$
3 \%
$$

of which

Simple sequence repeats
Transposable elements
"repeat sequences account for at least 50\% and, probably, much more"

From E. S. Lander et al. Initial sequencing and analysis of the human genome, Nature 409, 860-921, 2001

Could it be that protein sequences, actually, are ALL originally made from the aggressive repetitions?

And we don't see all the original repeats just because they have extensively mutated.

If this view is correct, then we should see in mRNA sequences

1. Ideal repeats of some codons - observed
2. The codons "sandwiched" between two identical codons should be their point mutation derivatives
3. Those codons which are more often in tandem repeats should be also of higher usage in non-repeats

We, thus, undertook analysis
of the largest non-reduntant database of mRNAs available, of total ~ 5000000000 codons, eukaryotes, prokaryotes, viruses, organelles together

[^1]
Sorted occurrence of the triplet repeats for different groups ("aggressive" triplets)

| | group of codons | Occurrence |
| ---: | :--- | :--- |
| 1 | GCC, CCG, CGC, GGC, GCG, CGC | 1784302 |
| 2 | GCA, CAG, AGC, UGC, GCU, CUG | 1436660 |
| 3 | GAA, AAG, AGA, UUC, UCU, CUU | 1131214 |
| 4 | AAU, AUA, uaa, AUU, UUA, UAU | 932105 (1 118526) |
| 5 | AUC, UCA, CAU, GAU, AUG, uga | 735397 |
| 6 | ACC, CCA, CAC, GGU, GUG, UGG | 726443 |
| 7 | AGG, GGA, GAG, CCU, CUC, UCC | 706484 |
| 8 | AAC, ACA, CAA, GUU, UUG, UGU | 694387 |
| 9 | ACG, CGA, GAC, CGU, GUC, UCG | 533888 |
| 10 | ACU, CUA, UAC, AGU, GUA, uag | 152747 |

1. Tandem repeats of all 61 different codons are observed,
strongest for aggressive groups, as expected

2. Middle codons abc in "sandwiches" GCUabcGCU (total 3168 933) are most often first derivatives of GCU

```
GCU 243706
GGU 125946
GAU 115500
GAA 114278 the topmost in codon usage
GUU 102550
GCA 95493
GCC 92153
AUU 89648
UUU 87861
AAA 84194 next topmost in codon usage
UUA 80660
GGA 74934
GGC 71770
```

This also holds for most of other codons
2. The first derivatives between the identical codons in mRNA
keep memory of initial tandem repetition of the codons

```
ATG GCT CTA ACC AAA GAA GAT ATT TTA AAC GCA ATT GCT GAA ATG CCA GTA ATG
GAC CTT GTT GAG CTT ATC GAA GCT GCA GAA GAA AAA TTC GGT GTA ACA GCT ACT
GCT GCT GTT GCT GCC GCT GCT CCT GCT GCT GGC GGT GAA GCT GCT GCA GAA CAA
ACT GAA TTT GAT GTT GTT TTG ACA TCT TTC GGT GGT AAC AAA GTT GCT GTA ATC
AAA GCG GTA CGT GGC GCA ACT GGT CTT GGC TTG AAA GAA GCT AAA GAA GTA GTT
GAA GCT GCA CCG AAA GCG ATT AAA GAA GGC GTT GCT AAA GAA GAA GCT GAA GAA
CTT AAG AAG ACG CTT GAA GAA GCT GGC GCT GAA GTT GAG CTT AAG
```

GAA and GCT "bricks" in mRNA of ribosomal protein L12 of Ps. atlantica

3. The more frequently the codon appears in tandem the more frequent it is also in non-repeating regions of mRNA

This result came as a surprize, considering zelions of factors known to influence the codon usage

More frequent codons keep memory of tandem repetition of these codons in the past

The triplet expansion of codons
is the major single factor
shaping the codon usage

Thus, life started with the replication (and expansion) and subsequent mutations of tandemly repeating triplets GGC and GCC. (self-reproduction with variation)

Life continued then to spontaneously emerge within the primitive early genomes and further on, in form of replication and expansion and subsequent mutations
of other tandem repeats as well
(self-reproduction with variation)
Life never stopped emerging

The tandem repeats have been considered as a class of
"selfish DNA" (Orgel and Crick, 1980; Doolittle and Sapienza, 1980).
They are, actually, more than just parasites tolerated by genome.
They are even more than building material for the genome (Ohno, Junk DNA, 1972).

The tandem repeats represent constantly emerging life, and genomes are products of their everlasting domestication.

Genomes are built by the expansion and mutational domestication of the tandem repeats

> Genomes ARE the repeats (some already unrecognizable)

Genes and protein sequences evolve as a mosaic of expanding nucleotide and amino acid repeating sequences, gradually mutating to their modern sequence appearance not recognizable as repeats anymore

Genomes are all built from simple repeats. Just many of them already unrecognizable

High complexity - used to be simple repeat long time ago

intermediates

Low complexity (simple repeat) - just appeared

I wish you all success in your studies, exams and healthy interesting life

Total 406 slides (2014)

5-lectures course, 80 slides each

Edward N. Trifonov

(kakhol ve lavan)
(blue and white)

Cohanim 2006

Yeast
Cohanim, 2005

Species-specificity of nucleosome positioning Allan et al. JMB, 2010

Sequences shifted by one residue may belong to the same network

| Decay of the initial sequence paitem | Dexay of the final sequence patem |
| :---: | :---: |
| EFVAIVGPSGCGESTLLRLL | EFVAIVGPSGCGKSTLLRLL |
| EKVGIVGPSGAGKSTLINLL | EKVGIVGPSGAGRSTLINLL |
| IRVGIVGGSGYGAIELIRLL | IKVGIVGGSGYGAIELIRLL |
| IKVAIVGGSGYIGGELIRLL | IKVAIVGGSGYIGGELIRLL |
| IKMAVVGASGYIGGELVRLL | IHAAVVGASGYIGGELVRLL |
| ATALVLGASGGIGGELMRQL | ATALVLGASGGIGGELARQL |
| PTALVTGSSEGIGLALARGL | RTALVTGSSRGIGLALARGL |
| RTALVTGARSGIGLATARPL | RTALVTGAASGIGLATARRL |
| QTVLVIGARSGIGLAQVQSP | QTVLVIGAASGIGLAQVQSF |
| QIVLVQAARGGVGLAAVQLA | QTVLVQAAAGGVGLAAVQLA |
| GTSLVYIGVGGVGLAA VELA | GTSLVVIGVGGVGLAAVELA |
| GSTAVVIGLGGVGLAAVLGA | GSTAVVIGLGGVGLAAVLGA |
| GSTVAIVGLGGIGLSALLGA | GSIVAIVGLGGIGLSALLGA |
| GEFVAIWGLSGAGESTLLRA | GEFVAIVGLSGAGRSTLLRA |
| GEFVAIVGPSGOGKSTLLRL | GEFVAIVGPSGCGKSTLLRL |

Formation of shifted self by deletion of repeating residue

| Sequence from proteomes | Sequence Position | Swiss-Prot Code | | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RKLEEGEAAAAAASKPKFPR | 590 | Q8P7G9 |
| \|||||||| ||| | | |
| MRKLEDGEAAAAASKPRFPR | 580 | Q8PIT2 |
| \||||| |||||| | | |
| MRKLEEGEAAAAAASKPKFP | 589 | Q8P7G9 |

| Sequence from proteomes | Sequence Position | Swiss-Prot Code | | | | | | | | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RKLEEGEAAAAAASKPKFPR | 590 | Q8P7G9 |
| \|||| |||||| |||| | | |
| MRKLEDGEAAAAA-SKPRFPR | 580 | Q8PIT2 |
| \||||| ||||||| ||| || | | |
| MRKLEEGEAAAAAASKPKFP | 589 | Q8P7G9 |

[^0]: DROTEIN-CODING SEQUENCES: $\sim 80 \%$

[^1]: Z. Frenkel, E. Trifonov, JBSD, 30, 201-210 (2012)

