
1/36 

PROTEIN ENGINEERING 
10. EXAMPLE OF UTILIZING PROTEIN ENGINEERING TO ENHANCE 

ENZYME STABILITY    

Loschmidt Laboratories 

Department of Experimental Biology 

Masaryk University, Brno 



2/36 

Outline 

 Process design criteria 

 Engineering enzyme stability and resistance to an organic 

cosolvent by modification of residues in the access tunnel 

 - motivation 

 - aims 

 - results 

 - conclusions 

 Method of protein stabilization – patent application 

Protein Engineering 
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 higher activity at process conditions 

 increased process stability 

 increased thermostability to run at higher temperatures 

 stability to organic solvents 

 absence of substrate and/or product inhibition 

 increased selectivity (enantio-, regio-, chemo-) 

 accept new substrate 

 catalyse new reactions 
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 absence of substrate and/or product inhibition 

 increased selectivity (enantio-, regio-, chemo-) 

 accept new substrate 

 catalyse new reactions 
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Motivation 

 organic cosolvents can have a positive effect on catalysis 

 - improving substrate solubility 

 - alteration substrate specificity and enantioselectivity 

 - suppression of water-induced side reactions 

 higher concentration of organic co-solvents usually cause 

protein denaturation 

Protein Engineering 
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 to identify mutations influencing stability of haloalkane 

dehalogenases in organic cosolvent 

 to construct haloalkane dehalogenase with improved 

stability in buffer containing DMSO 

Aims 

Protein Engineering 
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 error-prone PCR (epPCR) by Taq polymerase, MnCl2 

 screening by pH indicator assay in MTPs with 42 - 52% DMSO 

phenol red: red        yellow (pH lower than 6.6) 

 purification by affinity chromatography 

 thermodynamic stability and structural characterization 

by circular dichroism, fluorescence spectroscopy, differential 

scanning calorimetry and X-ray crystallography 

 functional characterization and kinetic stability             

by activity assay (Iwasaki method) and steady-state kinetics 

Methods 
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 thermodynamic x kinetic stability 

Methods 
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Methods 

 site-directed mutagenesis by QuikChange 

 gene synthesis 

 saturation mutagenesis by inverse PCR using a synthetic 

oligonucleotide with one degenerated NNK codon  

 molecular basis of resistance to organic cosolvent              

by molecular dynamics simulations in 40% DMSO 



Studied HLD 

DhaA  
from Rhodococcus rhodochrous  
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7 000 colonies 

4 positive hits 

Directed evolution 

DhaA 

epPCR 
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Mutant resistant to DMSO 
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Mutant resistant to DMSO 

DhaA 57  
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Mutant resistant to DMSO 

DhaA 57  
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Mutant resistant to DMSO 

DhaA 57  
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melting temperature in buffer (°C) 

half-concentration of DMSO (%) 

half-life in 40% DMSO at 37 °C (h) 
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50 29 0.1 56 43 

DhaA 57 

0.6 
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Mutant resistant to DMSO 
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Mutant resistant to DMSO 

DhaA 63 
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DhaA 60 DhaA 82 
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DhaA DhaA 631 

50 29 68 0.1 2236 

melting temperature in buffer (°C) 

half-concentration of DMSO (%) 

half-life in 40% DMSO at 37 °C (h) 
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Mutant resistant to DMSO 
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Mutant resistant to DMSO 
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Mutant resistant to DMSO 

DhaA wt  
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Mutant resistant to DMSO 

DhaA 57  
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DhaA wt  DhaA 57  DhaA 80  

Mutant resistant to DMSO 
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Conclusion 

 resistance towards organic cosolvents correlates with 

thermostability 

 mutations lining access tunnel modulate occupancy of active 

site by solvent and can stabilize protein 

 robust catalysts were developed:                                             

4 point mutations, Tm ↑ 19 C, T1/2 (40 % DMSO) min → days 

 engineering of access tunnels represents novel strategy 

for engineering of robust catalysts 

Protein Engineering 27/36 
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Method of protein stabilization 

 method for modification of the access routes in order to achieve 

better stability of protein towards temperature and solvents 

 definition of the access routes: channel x tunnel 
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 method for modification of the access routes in order to achieve 

better stability of protein towards temperature and solvents 

 definition of the access routes: channel x tunnel 

 general concept, tunnels found in all enzyme classes 

Method of protein stabilization 
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Cytochrome CYP3A4 
EC 1.1.3.6  

Chalcone synthase 
EC 2.3.1.74   

Tryptophan synthase 
EC 4.2.1.20  

Acetylocholinesterase 
EC 3.1.1.7  

Methylmalonyl-CoA mutase 
EC 5.4.99.2  

Asparagine synthetase 
EC 6.3.1.1  

1. OXIDOREDUKTASES 2. TRANSFERASES 3. HYDROLASES 

4. LYASES 5. ISOMERASES 6. LIGASES 



 procedure of protein stabilization 

 - identification the amino acids lining access routes based on 
knowledge of structure (CAVER, HotSpot Wizard) 

 - modification of selected amino acids „hot spots“                
(site-directed mutagenesis, random mutagenesis) 

 - analysis of constructed variants/libraries, assessment of the 
result of modification 

 rational focused mutagenesis based on detailed knowledge of 
structure and function 

 - creation of small focused “smart” libraries 

 - increase likelihood of beneficially modifying property 

Method of protein stabilization 
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 modification of shape and physico-chemical properties of tunnels 

 - selective discrimination between the molecules of a 
substrate/product and undesired solvent molecules inside the 

access routes 

 - strengthening of hydrophobic interactions within the tunnel 

 - thermostability enhancement 

 high thermostability and resistance against organic cosolvents     
= required process design criteria 

 invention describing the method of stabilization patented 

 Damborsky, J., Prokop, Z., Koudelakova, T., Stepankova, V., Chaloupkova, R., 

Chovancova, E., Gora, A., Brezovsky, J., 2011: Method of thermostabilization of a 
protein and/or stabilization towards organic solvents. Patent PV 2011-680. 

Method of protein stabilization 
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 identification of tunnels – CAVER1 

www.caver.cz 

1Chovancova E. et al., 2012, PLoS Comp. Biol. 8: e1002708  
 

Method of protein stabilization 
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 QUESTIONS ? 
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