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O Process design criteria

d Engineering enzyme stability and resistance to an organic
cosolvent by modification of residues in the access tunnel
- motivation
- aims
- results

- conclusions

d Method of protein stabilization — patent application
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Process design criteria
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higher activity at process conditions

increased process stability

increased thermostability to run at higher temperatures
stability to organic solvents

absence of substrate and/or product inhibition

increased selectivity (enantio-, regio-, chemo-)

accept new substrate

catalyse new reactions
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Motivation

d organic cosolvents can have a positive effect on catalysis
- improving substrate solubility
- alteration substrate specificity and enantioselectivity
- suppression of water-induced side reactions

O higher concentration of organic co-solvents usually cause
protein denaturation
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d to identify mutations influencing stability of haloalkane
dehalogenases in organic cosolvent

O to construct haloalkane dehalogenase with improved
stability in buffer containing DMSO
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Methods

O error-prone PCR (epPCR) by Taq polymerase, MnCl,

O screening by pH indicator assay in MTPs with 42 - 52% DMSO
phenol red: red «— vyellow (pH lower than 6.6)

O purification by affinity chromatography

d thermodynamic stability and structural characterization
by circular dichroism, fluorescence spectroscopy, differential
scanning calorimetry and X-ray crystallography

d functional characterization and kinetic stability
by activity assay (Iwasaki method) and steady-state kinetics
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d thermodynamic x kinetic stability

Definitions of various stability parameters.

Measure Symbol Type of stability Definition

Free energy of unfolding AG Thermodynamic Change in Gibbs free eneray going from the folded to unfolded state

The concentration of denaturant needed to unfold half of the protein
chemical equivalent of 1,
Observed deactivation rate Kd.obs Kinetic Overall rate constant for going from native to deactivation species

Half-life Kinetic quired for residual activity to be reduced to half

Temperature of half- Tso Kinetic Temperature of incubation to reduce residual activity by half during a
inactivation defined time pericd

Optimum temperature Topt Kinetic Temperature leading to highest activity

Total turnover number TTN Kinetic Moles of product produced over the lifetime of the catalyst




Methods

d site-directed mutagenesis by QuikChange

0 gene synthesis

d saturation mutagenesis by inverse PCR using a synthetic
oligonucleotide with one degenerated NNK codon

d molecular basis of resistance to organic cosolvent
by molecular dynamics simulations in 40% DMSO
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Studied HLD

DhaA

from Rhodococcus rhodochrous
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Directed evolution

4 positive hits

Protein Engineering 10/36



Mutant resistant to DMSO
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Mutant resistant to DMSO
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Mutant resistant to DMSO
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melting temperature in buffer (°C)
half-concentration of DMSO (%)
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O

A 7 half-life in 40% DMSO at 37 °C (h)



| melting temperature in buffer (°C)
() half-concentration of DMSO (%)
A 7 half-life in 40% DMSO at 37 °C (h)



melting temperature in buffer (°C)
half-concentration of DMSO (%)

[]
O

A 7 half-life in 40% DMSO at 37 °C (h)

Adv. Synth. Catal. 343, 607-617 (2001)

1Gray, K.A. et al.:
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Mutant resistant to DMSO

Specific activity in 40% DMSO
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DhaA 80

7[5 102 4

| melting temperature in buffer (°C)

A 7 half-life in 40% DMSO at 37 °C (h)

half-concentration of DMSO (%)

1Gray, K.A. et al.: Adv. Synth. Catal. 343, 607-617 (2001)
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Mutant resistant to DMSO
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| melting temperature in buffer (°C)
() half-concentration of DMSO (%)

A half-life in 40% DMSO at 37 °C (h) DhaA 88

o3 [se /252 4

1Gray, K.A. et al.: Adv. Synth. Catal. 343, 607-617 (2001)
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Mutant resistant to DMSO

DhaA 57 DhaA 80
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Conclusion

d resistance towards organic cosolvents correlates with
thermostability

d mutations lining access tunnel modulate occupancy of active
site by solvent and can stabilize protein

O robust catalysts were developed:
4 point mutations, 7., 1 19 C, T/, (40% DMSO) min — days

0 engineering of access tunnels represents novel strategy
for engineering of robust catalysts
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Conclusion

Angewandte

itemmisnalediion . CHEMIIE

. A DOI: 10.1002/anie.201206708
Protein Stability /

Engineering Enzyme Stability and Resistance to an Organic Cosolvent
by Modification of Residues in the Access Tunnel**
Tana Koudelakova, Radka Chaloupkova, Jan Brezovsky, Zbynek Prokop, Eva Sebestova,

Martin Hesseler, Morteza Khabiri, Maryia Plevaka, Daryna Kulik, Ivana Kuta Smatanova,
Pavlina Rezacova, Rudiger Ettrich, Uwe T. Bornscheuer, and Jiri Damborsky*

z=01h
Tm=50°C

o~ redesign
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Method of protein stabilization

O method for modification of the access routes in order to achieve
better stability of protein towards temperature and solvents

0 definition of the access routes: channel x tunnel
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O method for modification of the access routes in order to achieve
better stability of protein towards temperature and solvents

0 definition of the access routes: channel x tunnel

d general concept, tunnels found in all enzyme classes
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1. OXIDOREDUKTASES 2. TRANSFERASES 3. HYDROLASES

Cytochrome CYP3A4 Chalcone synthase Acetylocholinesterase
EC1.1.3.6 EC 2.3.1.74 EC3.1.1.7
4. LYASES 5. ISOMERASES 6. LIGASES

Tryptophan synthase Methylmalonyl-CoA mutase Asparagine synthetase
EC 4.2.1.20 EC 5.4.99.2 EC6.3.1.1



Method of protein stabilization

O procedure of protein stabilization

- identification the amino acids lining access routes based on
knowledge of structure (CAVER, HotSpot Wizard)

- modification of selected amino acids , hot spots™
(site-directed mutagenesis, random mutagenesis)

- analysis of constructed variants/libraries, assessment of the
result of modification

O rational focused mutagenesis based on detailed knowledge of
structure and function

- creation of small focused “smart” libraries

- increase likelihood of beneficially modifying property
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modification of shape and physico-chemical properties of tunnels

- selective discrimination between the molecules of a
substrate/product and undesired solvent molecules inside the
access routes

- strengthening of hydrophobic interactions within the tunnel
- thermostability enhancement

high thermostability and resistance against organic cosolvents
= required process design criteria

invention describing the method of stabilization patented
Damborsky, J., Prokop, Z. Koudelakova, T, Stepankova, V. Chaloupkova, R,

Chovancova, E., Gora, A., Brezovsky, J.,, 2011: Method of thermostabilization of a
protein and/or stabilization towards organic solvents. Patent PV 2011-680.




Method of protein stak

O identification of tunnels — CAVER!

‘ W m | software tool for protein
. J analysis and visualisation

L and plugins

caver viewer

WWW.CaVver.Cz

1Chovancova E. et a/,, 2012, PLoS Comp. Biol. 8: 1002708
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Helpful references

O Koudelakova, T. et al. (2013) Engineering enzyme stability and
resistance to an organic cosolvent by modification of residues in
the access tunnel, Angew. Chem. Int. Ed. 52: 1959-1963

d Gray, K.A. (2001) Rapid evolution of reversible denaturation and
elevated melting in a microbial haloalkane dehalogenase, Adv.
Synth. Catal. 343: 607-617

@ Chovancova, E. (2012) CAVER 3.0: A Tool for Analysis of Transport
Pathways in Dynamic Protein Structures, PLoS Comput. Biol. 8:
e1002708

0 QUESTIONS?
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