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Refugia revisited: individualistic responses
of species in space and time

John R. Stewart1, Adrian M. Lister1, Ian Barnes2 and Love Dalén2,*,†

1Department of Palaeontology, Natural History Museum, Cromwell Road, London SW7 5BD, UK
2School of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK

Climate change in the past has led to significant changes in species’ distributions. However, how individ-

ual species respond to climate change depends largely on their adaptations and environmental tolerances.

In the Quaternary, temperate-adapted taxa are in general confined to refugia during glacials while cold-

adapted taxa are in refugia during interglacials. In the Northern Hemisphere, evidence appears to be

mounting that in addition to traditional southern refugia for temperate species, cryptic refugia existed

in the North during glacials. Equivalent cryptic southern refugia, to the south of the more conventional

high-latitude polar refugia, exist in montane areas during periods of warm climate, such as the current

interglacial. There is also a continental/oceanic longitudinal gradient, which should be included in a

more complete consideration of the interaction between species ranges and climates. Overall, it seems

clear that there is large variation in both the size of refugia and the duration during which species are

confined to them. This has implications for the role of refugia in the evolution of species and their

genetic diversity.
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1. INTRODUCTION
It has long been recognized that the geographical ranges

of species have expanded and contracted in a cyclical

manner according to the climatic changes of the Quatern-

ary (Darwin 1859, pp. 364–382; Hewitt 1996; Bennett &

Provan 2008). The places where species persist during

glaciations have generally been described as refugia. Iso-

lation within such glacial refugia, and the timing and

mode of expansion from them, have become topics of

increasing importance in our understanding of evolution-

ary processes such as adaptation, speciation and

extinction. Understanding how species have responded

to past climate changes, and where they endured periods

of adverse climates, also has relevance for models fore-

casting how current climate change may affect species.

The subject of Quaternary refugia is therefore of interest

to a variety of researchers including palaeoecologists,

population geneticists and conservation biologists.

Owing to the breadth of this array of interested scientists,

however, there is confusion about the meaning of the

refugium concept.

We propose here that Quaternary refugia should be

defined as the geographical region or regions that a

species inhabits during the period of a glacial/interglacial

cycle that represents the species’ maximum contraction in

geographical range. This is a flexible definition that

accommodates species that are adapted to different cli-

matic conditions, while at the same time highlighting

the idea that species in general respond to climatic
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changes independently of each other (Taberlet et al.

1998; Stewart 2008; see also the literature on vegetational

change reviewed by Hewitt 1996). We nonetheless con-

sider it useful to identify and discuss different categories

of refugium, based both on general geographical location

and whether the refugium is inhabited by a temperate or a

cold-adapted species. The oceanic–continental gradient,

with its corresponding variation in key parameters, will

be considered in greater detail owing to its relevance to

organisms of the last cold stage of the Pleistocene. Fur-

thermore, we discuss the effects of differing refugial

sizes and varying lengths of time during which popu-

lations are restricted to refugia. We also consider the

degree to which different species have the same refugia

and the fate of populations outside refugia during the

contraction phase. Finally, the role of refugia in species

evolution is discussed, with examples illustrating different

possible scenarios. We have concentrated on the mid- to

high-latitude Palaearctic as this area has a relatively

well-documented history and has been the locus of pio-

neering studies on the biotic effects of glacial/interglacial

cycles (e.g. Hewitt 1996, 1999, 2000), while recognizing

that many analogous studies have been made in North

America (Avise 2000; Swenson & Howard 2005).
2. PREVIOUS USE OF THE REFUGIUM CONCEPT
The glacial refugium hypothesis has dominated studies of

ice age biogeography for some time (e.g. Holder et al.

1999). This concept sees the cold, glacial, phases of

Earth’s recent history as being the primary forcers of

population divergence and, in some cases, speciation

(Hewitt 1996). This emphasis on the cold phases comes

partly from the origin of the refugium concept, which
This journal is q 2009 The Royal Society
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arose from a consideration of the contraction phase of

vegetation during glacial stages (Bennett & Provan 2008).

It has also led to a general assumption that many organisms

are pushed southwards as the glaciated north becomes

inhospitable to many life forms. In recent phylogeographic

studies, different organisms have been shown to expand

out of various European peninsulae and other southern

refugia at the end of the last ice age (Taberlet et al. 1998;

Hewitt 1999, 2000, 2004). This picture was, however,

complicated by the suggestion that cryptic northern refugia

had existed in the Late Pleistocene for some temperate

organisms (Bilton et al. 1998; Willis et al. 2000; Stewart &

Lister 2001; Stewart 2003). In addition, it has been

argued that some, or most, peninsular populations were

areas of endemism rather than refugia (Bilton et al. 1998;

Stewart 2003; Bennett & Provan 2008; Bhagwat & Willis

2008; Provan & Bennett 2008).

Over recent years, the use of the glacial refugium concept

has broadened, and has frequently been applied to cold-

adapted species such as lemmings (Fedorov & Stenseth

2001, 2002), rock ptarmigan (Lagopus muta; Holder et al.

1999), mountain sheep (Loehr et al. 2005), mountain

avens (Dryas integrifolia; Tremblay & Schoen 1999) and

white spruce (Picea glauca; Anderson et al. 2006). The pro-

blem, in our view, with assigning glacial refugia to cold-

adapted species is that they generally have a larger

distribution during cold stages than during periods of

warm climate (e.g. Stewart & Lister 2001; Dalén et al.

2005; Stewart & Dalén 2008). Although vicariance

events may have resulted from the growth of ice sheets

during cold stages, or rising sea levels during warm

periods, such isolated populations can hardly be viewed

as refugial, since the species would have had large distri-

butions elsewhere (Musil 1985; Tyrberg 1991; Stewart

et al. 2003, etc.). Instead, we argue that since the range

of cold-adapted species is at its minimum during periods

of warm climate, such species are in refugia during inter-

glacials. Our refugial concept also excludes ‘range shifts’

that do not entail a significant contraction of area; popu-

lation or genetic ‘bottlenecks’, which imply reduced

population size and will often result from refugial contrac-

tion but do not entail it; populations left in isolation as the

species range contracts but that rapidly extirpate as climate

worsens; and species that permanently occupy a small

range. We also do not treat an area per se as a refugium

except insofar as it contains refugial populations of one

or more species.

An important category of refugia are the cryptic refugia

as defined by Stewart & Lister (2001). Cryptic refugia are

refugia situated at different latitudes or longitudes than

would normally be expected, and often resemble climatic

islands in which conditions differ favourably from the sur-

rounding areas. Rull (2009) has revived his concept of

‘macrorefugia’ and ‘microrefugia’ for larger and smaller

refugial areas, subsuming cryptic refugia within micro-

refugia. However, his concept of microrefugia covers a

broader range of phenomena, including widespread but

low-density populations, and hypothesized large numbers

of small, isolated populations, than we consider here;

and his definition of microrefugia would include any

area with a small, isolated population, whereas we limit

the refugial concept to the contraction phase of a species’

expansion–contraction cycle. Finally, although (as

discussed below) cryptic refugia will often be smaller
Proc. R. Soc. B (2010)
than conventional refugia, small size is not integral to

their definition.

Recently, the value of continuing to use the refugium

concept has been challenged by Bennett & Provan

(2008), who point out that there are many and complex

ways in which species respond to climatic and environ-

mental change, and that the refugial concept has lacked

clear definition and has been used in confusingly different

ways. While we agree with those points, we believe that

the refugial concept, as we have defined and limited it,

remains important for a variety of reasons. The cycle of

expansion and contraction into refugia (as we define

them) has a particular importance in species-level evol-

ution, including its significance in determining the

pattern of genetic variation in a species. Issues of refu-

gium size are also important, both because they lead to

testable predictions of the effects of refugial contraction

across taxa and because of their relevance to extinction

risk, both in the past and in the conservation biology of

today. Finally, refugia remain important as the source

populations from which species expand their ranges at

the onset of more favourable conditions.
3. SPATIAL AND TEMPORAL CATEGORIES
OF REFUGIA
The concept of refugium used here is the area occupied

by an individual species, not the area occupied by a

whole community of species as in some studies (e.g.

Whittington-Jones et al. 2008). We propose to classify

refugia first from a temporal perspective, where species

can be broadly viewed as having either glacial or interglacial

refugia. Second, we divide refugia into further categories

based on their geographical location. The categories of

refugia, therefore, include the traditional southern refugia

and the equivalent polar refugia for cold-adapted species,

as well as cryptic refugia to the north or south of the

main areas into which populations contract (figure 1).

This classification is reminiscent of that used by

Thienemann (1950). We also introduce a new dimension,

the continental/oceanic gradient, and discuss refugia for

organisms adapted to these respective conditions.

Examples of each type of refugium are given below and

are listed in table 1. It is acknowledged that for some

species it may be difficult to determine whether they

had larger or smaller ranges during glacials or intergla-

cials. This would be particularly the case for taxa with

broad ecological ranges (e.g. the wolf Canis lupus), and

for species with meagre fossil records (e.g. many insects).

It should also be noted that the definitions given here are

for the Northern Hemisphere and that these would have

their mirror image in the Southern Hemisphere.

(a) Glacial refugia

(i) Southern refugia

These are the traditionally accepted refugia for temperate

species during glacial phases, which in general comprise

the southern portion of the species’ distribution during

warm climatic phases such as the current interglacial. In

Europe, southern refugia are generally located within

the Iberian, Italian and Balkan peninsulas. The identifi-

cation of these refugia was initially based on

palaeoecological evidence (Huntley & Birks 1983;

Bennett et al. 1991) and was later confirmed through

http://rspb.royalsocietypublishing.org/


Figure 1. Schematic map showing some types of refugia for Europe and western Asia. Interglacial refugia for cold-adapted

species are shown in blue, glacial refugia for temperate species in red. Long-term refugia, indicated by dark blue/red, are a
subset of all refugia that are inhabited throughout at least one full glacial/interglacial cycle. The areas shown in paler colour
are refugia in the sense that they are inhabited during the contraction phase, but are not inhabited during the expansion
phase owing to the spread of ice sheets during glacials (cold-adapted species), or excessive temperatures and/or too high aridity
during interglacials (temperate species). Also shown, in yellow, are interglacial refugia along the oceanic/continental gradient,

with a continental refugium in the east and cryptic refugia further west. The ice sheet for the Last Glacial Maximum is taken
from Ehlers & Gibbard (2004). The diagram is schematic; not all of the refugia would have been occupied simultaneously, but
the ranges are based on real examples taken from table 1.
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phylogeographic studies, which showed that many extant

populations further north are derived from southern

regions (Hewitt 1996, 1999, 2000). This pattern of gla-

cial survival in the South, followed by post-glacial

recolonization of northern regions, seems to be a general
Proc. R. Soc. B (2010)
pattern among a variety of temperate taxa, including

plants, insects and vertebrates (Hewitt 2001). However,

different species’ expanded populations seem to be

derived from different southern refugia, suggesting that

species have responded individualistically to the increases

http://rspb.royalsocietypublishing.org/


Table 1. Classification of refugia together with examples identified by phylogeographic and other studies.

refugium type taxon study

temperate taxa in glacials
southern refugia U. arctos, Erinaceus sp., Chorthippus

parallelus, Quercus spp., Arvicola spp.,
Crocidura suaveolens, Triturus spp.,
Apodemus sylvaticus

Hewitt (1996, 1999, 2000), Taberlet et al.
(1998).

cryptic northern refugia Clethrionomys glareolus, Sorex araneus,
Microtus araneus, Asplenum ceterah,
Carex digitata

Wójcik et al. (2002), Trewick et al. (2002),
Tyler (2002a,b), Jaarola & Searle

(2003), Deffontaine et al. (2005) and
Teacher et al. (2009).

cold taxa in interglacials (e.g. present day)
polar refugia R. tarandus, A. lagopus, Dicrostonyx

spp., Lagopus spp.

Fedorov et al. (1999), Flagstad & Røed

(2003), Dalén et al. (2005) and Stewart &
Dalén (2008).

cryptic southern refugia L. muta, D. octopetala, B. nana,
H. lapponicus

Angus (1983) and Stewart & Lister
(2001).

continental-adapted taxa in interglacials (e.g. present day)
continental refugia Spermophilus spp., S. tatarica and

Ochotona spp.

no study but apparent from comparison

between fossil record and modern
distribution, e.g. Musil (1985).

cryptic refugia for continental-
adapted taxa (in more

oceanic areas)

S. subtilis, H. rhamnoides. no study but apparent from fossil record
and modern distribution, e.g.

Macdonald & Barrett (1993) and
Iversen (1973).
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in habitat availability brought on by the climatic changes

at the end of the last glaciation (Taberlet et al. 1998).

In the last decade, several studies have confirmed the

existence of similar southern refugia in North America

(e.g. Lacourse et al. 2005; Soltis et al. 2006), as well as

analogous northern refugia in the Southern Hemisphere

(Byrne 2008).

(ii) Cryptic northern refugia

Cryptic northern refugia are glacial refugia for temperate

taxa situated at higher latitudes than the expected areas of

suitable habitat to the South. The concept, as originally

conceived by Stewart & Lister (2001) was applied to

taxa that were not generally accepted as living in central

or northern Europe during the last glaciation. However,

the concept is in need of refinement as it has subsequently

been applied to non-temperate taxa (e.g. Pruett & Winker

2005). In fact, the original inclusion of pine (Pinus sylvestris)

living on the Norwegian coast during the last glaciation

(Stewart & Lister 2001), was already stretching the

definition of a cryptic northern refugium as this taxon is

not strictly temperate and is relatively cold-tolerant.

The cryptic northern refugium hypothesis has received

significant support since its publication, with phylogeo-

graphic studies finding evidence for northern refugia in

various temperate organisms, including small mammals

(Wójcik et al. 2002; Jaarola & Searle 2003; Deffontaine

et al. 2005; Kotlik et al. 2006), ferns (Trewick et al.

2002), sedges (Tyler 2002a,b), snails (Haase & Bisenberger

2003; Pfenninger et al. 2003; Benke et al. 2009), fresh-

water fishes (Hänfling et al. 2002; Volckaert et al. 2002),

amphibians (Teacher et al. 2009) and reptiles (Carlsson

2003). Further evidence in support of the hypothesis

has come from the study of fossil pollen, plant macros

including wood charcoal, and mammals (Birks 2003;

Willis & van Andel 2004; Sommer & Nadachowski

2006; Caseldine et al. 2008).
Proc. R. Soc. B (2010)
(b) Interglacial refugia

(i) Polar refugia

Polar refugia are the high-latitude regions where cold-

adapted species persist through interglacials. In the

Northern Hemisphere, polar refugia are located in the

northernmost parts of continental Eurasia and North

America, as well as in several islands in the Arctic

Ocean, for example Greenland, Svalbard, Wrangel

Island and the New Siberian Islands.

During the last glaciation, many cold-adapted species

had a larger distribution than they have today. Further-

more, several studies on cold-adapted species have

identified genetic signatures of increase in population

size during the early stages of the last glaciation,

suggesting that these species had small population sizes

also during the last interglacial (Fedorov et al. 1999;

Flagstad & Røed 2003; Shapiro et al. 2004; Dalén et al.

2005). It therefore seems likely that glacial expansions

and interglacial contractions were a recurrent pattern for

cold-adapted species during the Late Quaternary. This

supports the idea that cold-adapted species are in refugia

during interglacials, and thus respond to climatic changes

in the opposite way to temperate species. Several Arctic

species are at present confined exclusively to polar refu-

gia, for example Arctic fox (Alopex lagopus), lemmings

(Lemmus spp. and Dicrostonyx spp.), reindeer (Rangifer

tarandus) and muskox (Ovibos moschatus). The present

ranges of some of these species are large, but they are

still significantly reduced compared with their size

during the last glaciation.

(ii) Cryptic southern refugia

Cryptic southern refugia are interglacial refugia for cold-

adapted species situated at lower latitudes. Today, and

presumably also during previous interglacials, these

refugia accommodate relict populations of formerly wide-

spread cold-adapted Pleistocene taxa such as mountain

http://rspb.royalsocietypublishing.org/
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avens Dryas octopetala, dwarf birch Betula nana, rock

ptarmigan Lagopus mutus, Arctic hare Lepus timidus

and the water beetle Helophorus lapponicus (Angus

1983). Although not ‘cryptic’ in the original sense

(since their present ranges are well known), we nonethe-

less retain the term to emphasize the parallel to cryptic

northern refugia. Refugial areas for these taxa generally

have a montane topography such as the Alps and

Pyrenees, although when situated at higher latitudes

the altitude can be lower. The Scottish highlands are

therefore included as a cryptic southern refugium for

rock ptarmigan L. mutus and red/willow grouse Lagopus

lagopus. Populations of cold-adapted species in cryptic

southern refugia are often surrounded during intergla-

cials by populations of temperate species that have

expanded from their glacial refugia. Most of the species

in these refugia also have disjunct distributions (polar

refugia) to the north (e.g. rock ptarmigan, mountain

avens, Arctic hare and H. lapponicus). Some, however,

are only known in the southern montane refugia (e.g.

ibex Capra ibex and chamois Rupicapra rupicapra) in

southern Europe, although they were also found in

more northerly rocky lowland areas, such as southern

Belgium (Stewart et al. 2003), during the Late

Pleistocene.
(c) The oceanic–continental gradient

One biogeographic dimension that is often ignored in dis-

cussions on species’ response to the glacial/interglacial

cycle is the oceanic–continental axis. ‘Oceanic’ adap-

tation implies more humid, less seasonably variable

climate; ‘continental’ adaptation, drier climate with

greater seasonal variation. This is often a longitudinal

perspective as opposed to the latitudinal aspect of north-

ern and southern refugia. We are unaware of any

phylogeographic studies explicitly dealing with this per-

spective in detail. However, Eurasian mammal species

such as the ground squirrel Spermophilus spp., saiga ante-

lope Saiga tatarica and pika Ochotona spp. have more

restricted continental distributions in the Palaearctic

today, having had more extensive distributions, extending

to the British Isles, during parts of the last glaciation

(Musil 1985). In fact, it is this longitudinal gradient

that explains the expansion of steppic species and their

inclusion in the Late Pleistocene ‘steppe–tundra’

biome. We therefore propose that some species have

continental interglacial refugia.

Based on the existence of cryptic northern refugia for

temperate species and cryptic southern refugia for cold

species, it seems possible that a similar phenomenon

could exist along the longitudinal axis. For example,

one could expect species currently in eastern continental

refugia also to occur in cryptic refugia along the west

of Eurasia today. Possible examples are the southern

birch mouse (Sicista subtilis) in Hungary and Romania

(Macdonald & Barrett 1993) and some of the halophytic

plant species, such as sea buckthorn (Hippophaë

rhamnoides), found along the Atlantic seaboard as well

as in the Asiatic steppe (Iversen 1973). Identifying

currently isolated populations as cryptic refugia requires

care, however, as in some cases their separation or even

existence may be the result of historical human impact

on the landscape. In theory, one might speculate that
Proc. R. Soc. B (2010)
these refugia would have a counterpart in refugia, and

cryptic refugia, for ‘oceanic-adapted’ species during

glacials, since the extension of arid climates during the

Late Pleistocene would have been as much of an impedi-

ment to some taxa as the cold itself. However, we know of

no good example of a species that follows such a pattern.

The hippopotamus Hippopotamus amphibius, for example,

shows an oceanic distribution in the Palearctic during the

last interglacial, in that it spread no further east than

central Europe because of its intolerance of cold winters.

Its range contraction during the last glaciation, however,

was southward rather than westward, in this respect simi-

lar to other temperate species occupying southern refugia.

The longitudinal and traditional latitudinal gradients

would thus work in tandem in defining the precise

location of a species’ refugium, depending on the species’

ecology. This agrees with the expectation that species will

respond individualistically, and not in concert, to climatic

changes (Taberlet et al. 1998).
4. OTHER CATEGORIES OF REFUGIUM
The question arises whether some temperate species

could be in refugia during warm periods such as intergla-

cials, and cold-adapted species during cold periods. As

discussed above, mere isolation is not enough to justify

describing a population as refugial. Hence, populations

of temperate species isolated on islands during intergla-

cials, or of cold-adapted species isolated through glacial

vicariance, for example along the coasts and on nunataks,

would not alone constitute refugial populations, as long as

total species range remained large. However, following

the definition of a refugium proposed in this paper,

some cold-adapted species may actually have a smaller

distribution during parts of glacials compared with inter-

glacials owing to the advance and retreat of glaciers and

continental ice sheets. In periglacial areas, habitat restric-

tion evidently contracted the ranges of even cold-adapted

species into refugia during the maximally severe phases

of glacial climate (e.g. woolly mammoths; Stuart

et al. 2004).

Some cold-adapted species endemic to mountainous

regions might constitute a further category. Montane

species generally have larger ranges during glacials when

they spread to lowland areas (Stewart et al. 2003). How-

ever, some alpine species may be explicitly adapted to a

montane environment, and would thus not have

expanded into the surrounding lowlands during glacials.

Such alpine-adapted species could thus have larger distri-

butions during interglacials owing the expansion of

mountain glaciers during cold stages, and would instead

have been confined to nunataks or peripheral refugia

during glaciations (Holderegger & Thiel-Egenter 2008).
5. THE SIZE OF REFUGIA AND DURATION
OF OCCUPATION
Cryptic refugia are generally expected to be smaller than

the more traditional southern and polar refugia because

they are peripheral and are surrounded by unsuitable

habitats. Cryptic northern refugia may often comprise

sheltered habitats located in deeply incised valleys that

provided microclimates for temperate species, allowing

them to survive at latitudes where they would normally

http://rspb.royalsocietypublishing.org/
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have perished (Stewart & Lister 2001). Nonetheless,

recent work using back-casted species distribution

models has suggested relatively widespread distributions

for some small mammal species to the north of the tradi-

tional southern refugia during the Last Glacial Maximum

(Fløjgaard et al. 2009).

Cryptic southern refugia are generally located in

mountainous regions, where the high altitude provides

cooler climates than the surrounding landscape, thus per-

mitting the local survival of cold-adapted species at

relatively low latitudes during interglacials. Most such

refugia will be smaller than the regions comprising polar

refugia, at least in the Northern Hemisphere, although

this is not always clear-cut since high-altitude plateaus

and mountain ranges can be quite large.

The Quaternary encompassed climatic cycles of differ-

ing amplitudes and durations. This affected the length of

time temperate and cold-adapted species were confined to

refugia, which in turn can be expected to have had impor-

tant ecological and evolutionary consequences. One of

the major features of the Quaternary is the long-term cli-

matic cycling of the last 700 kyr. These cycles, with long

glaciations lasting up to 100 kyr and shorter interglacials

lasting 10–15 kyr, are thought to have been a major driv-

ing force for population divergence in temperate species

(Hewitt 1996). However, embedded within these long-

scale cycles are short-term climatic events that took

place on a millennial scale. These include warm intersta-

dials and particularly cold stadials during glacials, as well

as cool episodes during interglacials. These were first

documented through terrestrial pollen analyses and sub-

sequently correlated with detailed marine records

(Shackleton & Opdyke 1973; Tzedakis 1993). Since

then, further complexity has been detected in the cold

Heinrich events seen in marine sediments and the warm

Dansgaard–Oeschger events (Greenland interstadials)

identified in ice cores (Svensson et al. 2006).

The general expectation from the broad-scale pattern,

with long glacials and shorter interglacials, is that

temperate species spend much longer in refugia than

cold-adapted species. The effect of the shorter millen-

nial-scale fluctuations in climate is less clear, since these

are difficult to identify with precision in the terrestrial

record. However, it is probable that they also caused eco-

logical disturbances and gave rise to shorter term episodes

of refugial isolation and range expansions of temperate

and cold-adapted species during stadials and intersta-

dials. On the other hand, the duration of these

fluctuations may in some cases have been so short that,

even when climatically favourable, many species did not

expand their range fully. For example, slow-moving tem-

perate species in the Northern Hemisphere were probably

not able to expand as far north during interstadials

as expected, and vice versa for cold-adapted species

during stadials.

From an evolutionary perspective, the most important

refugial areas are geographical regions where a species has

persisted throughout a series of full glacial/interglacial

cycles (each 100–120 kyr in duration), since each full

cycle will usually have included a species’ maximum

and minimum distributions. The locations that a species

inhabits continuously for at least one full glacial/

interglacial cycle can be viewed as constituting ‘long-

term refugia’ (Stewart & Dalén 2008), and we expect
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that they will tend to harbour the greatest level of genetic

diversity within the species’ range. However, it is impor-

tant to note that not all refugia, as defined earlier, will

constitute long-term refugia. For example, many Arctic

regions that are inhabited by cold-adapted species

during interglacials, and thus are refugia by our defi-

nition, are made uninhabitable during glacials by

advancing ice sheets (see earlier). In the same way,

some southern glacial refugia may become too hot or

arid for a temperate species to persist there during inter-

glacials. In the case of cryptic refugia, some may operate

over several climatic cycles, others only for one. This

will vary with the niche of the particular species and the

geographical and climatic characteristics of the area that

formed the refugium. Consequently, what we here

define as long-term refugia will represent a subset of all

refugia, and will include both polar and southern refugia,

as well as some cryptic refugia.

The combination of refugial size and duration has

implications for species persistence. The reason for this

is that a population’s ability to persist throughout a

period of adverse climate (cold or warm depending on

the species’ ecology), without becoming extinct owing

to demographic stochasticity or inbreeding (Lande

1988), depends on the putative refugium’s carrying

capacity as well as the duration of the climatic stage.

The probability that a population will survive throughout

a period of adverse climate is therefore inversely related to

the duration of confinement, and positively related to the

size of the potential refugium. This suggests that it could

be possible to define a ‘minimum refugium size’ required

for species persistence, which would be dependent on the

climatic interval (100 kyr glaciations, 10–15 kyr intergla-

cials or millennial-scale stadials/interstadials), as well as

the space requirements of the species in question

(figure 2). Some general predictions arise from this con-

cept, particularly for animals. First, one would expect

cryptic refugia, owing to their relatively small size, to be

less common for large-bodied species since the carrying

capacity is generally lower for such species. Second,

species with a large body size would be less likely to per-

sist in cryptic northern refugia compared with those in

cryptic southern refugia, since glaciations are normally

an order of magnitude longer than interglacials. Third,

one would expect a trophic effect, where species with a

high trophic level (e.g. carnivores), regardless of their

body size, would be less likely to survive through ‘adverse’

climatic periods in small patches of suitable habitat

(figure 2), because of low population size and limited

food base, a concept familiar from island biogeography

(MacArthur & Wilson 1967).
6. THE ROLE OF SPECIES INDEPENDENCE AND
THE CONGRUENCE OF REFUGIA
Recently, the individualistic (or independent) response of

species to climate change over several glacial cycles has

been discussed (Stewart 2008). This independence has

implications for the congruence of refugia for different

species. Clearly, refugia will often be congruent owing

to their similar climatic and environmental requirements,

rather than any species-specific interdependence.

Congruence can also occur when species have similar dis-

continuous ranges resulting from different histories
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Figure 2. Conceptual figure showing the relationship
between size of a potential refugium and time to extinction
of the population (caused by demographic or genetic sto-
chasticity). Each line represents a range of areas occupied

by populations of a given species. The time required for
population extirpation is dependent on the size of the habitat
patch, and the horizontal dashed lines indicate the minimum
viable refugium size, i.e. the relative sizes required to survive
millennial-scale events, 10 kyr interglacials and 100 kyr gla-

ciations. The slope of the curve depends on several factors
such as body size, generation length and, as illustrated
here, trophic level. Dash-dotted curve, trophic level 0; solid
curve, trophic level 1.
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(Soltis et al. 2006). Coevolved relationships may lead to

stronger congruence of distributional history, for example

between some insects and their food plants, or parasites

and their hosts. In many cases, however, species are

believed not to be highly interdependent. This suggests,

for instance, that the existence of trees need not be

accompanied by the herbivores often associated with

them. A small stand of deciduous trees in the north of

Europe during a glacial is unlikely to be accompanied

by the whole ecosystem associated with a deciduous

forest biome in the area today. However, if it is associated

with some species, it needs to satisfy their habitat

tolerances as well as being large enough, with an adequate

carrying capacity for the species. This variation in com-

munity composition, together with the geographically

isolated nature of cryptic refugia, again recalls island

biogeography and can be expected to promote ecologi-

cally adaptive evolution (Hewitt 1996, 1999; Stewart

2008).
7. THE FATE OF POPULATIONS
OUTSIDE REFUGIA
There is an outstanding question about the fate of

populations outside refugia when climatic changes lead

to refugial confinement. Bennett et al. (1991) used

data from the pollen record to show that many tree

populations in northern Europe became extinct at the

onset of the last glaciation. Correspondingly, a recent

study by Dalén et al. (2007) showed that southern popu-

lations of the Arctic fox (A. lagopus) did not contribute

genetically to present-day populations when tempera-

tures increased at the end of the last glaciation. The

results from these studies suggest that expanded popu-

lations become extinct instead of tracking retreating

habitats by physically moving into the refugium
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(Hewitt 1993, 1996; Lister 1997; Stewart et al. 2003;

Dalén et al. 2007). This implies that populations in

long-term refugia are descended from individuals that

are already in place during the expansion phase, and

consequently that populations outside refugia make

little or no contribution to the long-term evolution of

the species. It should, however, be noted that the fate

of extra-refugial populations has only been investigated

in a limited number of taxa (Bennett et al. 1991;

Dalén et al. 2007), and thus would benefit from further

study. Nonetheless, we note that rarity of habitat track-

ing has the potential to explain the high degree of

population turnover described in several recent ancient

DNA studies (Barnes et al. 2002; Hofreiter et al. 2007;

Leonard et al. 2007). It also limits the value of phylogeo-

graphic studies of taxa currently in refugia (i.e. Arctic

taxa). This is because it is not possible to analyse the

previously expanded populations without using ancient

DNA. A failure to take account of recently extirpated

populations may lead to erroneous conclusions.

The ultimate fate of a species in a contraction phase

may be complete extinction, and because species’ ranges

tend to contract in the direction of their refugia, the

long-term refugial areas will often be the eventual location

of the terminal populations (von Koenigswald 1999;

Lister & Stuart 2008).
8. EVOLUTION AND SPECIATION
It is clear that refugial phases are times when populations

will be in isolation and hence more prone to evolutionary

divergence. As discussed earlier, different types of refugia

have different characteristics that lend themselves to

hypotheses of population differentiation and even specia-

tion. These factors will be discussed in turn.

The first factor to consider is that glacials—considered

broadly as even-numbered marine oxygen isotopic

stages—are longer than interglacials, so that cold-adapted

and temperate species have been restricted to refugia for

different lengths of time. In addition, polar refugia,

being situated near the poles, will tend to be geographi-

cally much closer together compared with southern

refugia. These two factors lead to an expectation of less

population divergence between populations in polar

refugia than those in southern refugia, in turn suggesting

that the opportunity for population differentiation is

greater in temperate species.

The question then arises whether refugial isolation can

lead to speciation. Lister (2004) concluded that several

hundred thousand years of isolation are normally required

for speciation to occur among mammals, although excep-

tions exist in other groups (e.g. cichlid fishes; Johnson

et al. 1996). This implies that refugial isolation during

one glacial cycle would often be insufficient for speciation

to take place. However, it is tempting to speculate that

isolation in cryptic refugia could occasionally lead to

this kind of rapid evolution, as these populations fulfil sev-

eral of the requirements for allopatric speciation (Mayr

1954; Eldredge & Gould 1972), particularly ‘ecological’

speciation under strong adaptive selection (Hendry et al.

2007; Nosil et al. 2009). First, populations in glacial cryp-

tic northern and interglacial cryptic southern refugia,

occupying ‘pockets’ of suitable habitat in otherwise

unfavourable regions, are likely often to be smaller than
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their counterparts in southern/polar refugia. Second, it is

likely that the populations in these cryptic refugia are sub-

jected to different selective pressures than the populations

inhabiting the more traditional refugia, especially when

the refugial isolation is accompanied by a change in

climate. Third, extinction of predators and competitors

owing to environmental change and small patch size

could change community structure and thus alter the

species’ realized niche and hence the selective pressures

on species—the ‘New Neighbour’ hypothesis of Hewitt

(1996, 2000, 2001) and (Stewart 2008, in press). These

processes could lead to rapid adaptive divergence and, if

reproductive isolation were underway before refugial

populations expanded and met on climatic amelioration,

constitute the first steps towards speciation.

The potential for speciation would be higher for popu-

lations in cryptic northern refugia during the longer

glacials than for cryptic southern refugial populations

during the shorter interglacials. It is therefore interesting

to consider the role of cryptic northern refugia for the

evolution of Arctic species, such as polar bear from

brown bear and the Arctic fox from swift fox. The phylo-

genetic evidence clearly shows that the polar bear (Ursus

maritimus) evolved from the brown bear (Ursus arctos)

and that this probably happened within the last

200–300 kyr (Talbot & Shields 1996; Ho et al. 2008).

For the polar bear to have evolved its unique adaptations,

a brown bear population must have become exposed to

northern climates and oceanic habitats. We suggest that

such a population is likely to have lived in a cryptic north-

ern refugium as this would have provided an opportunity

for allopatric speciation in isolation from other brown

bears. Similarly, the origin of the Arctic fox (A. lagopus)

from the temperate swift fox (Vulpes velox) is thought to

have happened at approximately the same time as

(Geffen et al. 1992), or slightly earlier than (Sher

1986), the polar bear evolved from the brown bear.

Similar evolution is presumably ongoing in the cryptic

southern refugia of the Alps and Pyrenees today where,

for example, distinct subspecies of rock ptarmigan have

evolved (L. m. helvetica and L. m. pyrenaicus). It is less

likely, however, that temperate species (rather than just

subspecies) have evolved from arctic ancestors in cryptic

southern refugia, both because interglacials are shorter

than glacials and because there is greater niche occupancy

in the species-rich, long-held temperate regions compared

with the relatively recently originated arctic zone.

Another speciation scenario that has been invoked is

the differentiation within temperate species while in

different southern refugia (Hewitt 1996; Lister 2004).

Quaternary glacial cycles are believed to have promoted

population divergence, and sometimes even speciation,

among populations in the Mediterranean peninsulae, for

example, although this seems to have required isolation

on time scales exceeding a single glaciation (Hewitt

1996). Such isolation between southern refugia, despite

mixing of lineages further north during interglacials, is

thought to have been made possible by a lack of habitat

tracking at the onset of glaciations (Hewitt 1999). It has

also been pointed out that many species never expanded

from their southern ranges, which allowed for long-term

isolation between populations (Bilton et al. 1998),

although by our definition these are not refugia.

Speciation among populations in southern refugia might
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generally be slower than in cryptic northern refugia, as

their population sizes are likely to be larger because of

the broader geographical area, which could have a tem-

pering effect on the rate of adaptive divergence (Mayr

1954). The importance of small population size in

evolution is, however, a topic of debate (Barton &

Charlesworth 1984; Coyne & Orr 2004). Furthermore,

since different southern refugia lie on approximately the

same latitude, their populations may have been subject to

similar selection pressures, especially given the additional

buffering effect provided by the complex topography of

many southern refugia (Tzedakis et al. 2002).
9. CONCLUSION
The subject of refugia is relevant to many areas of

ecology and evolutionary biology. Furthermore, the

individualistic nature of species’ responses to climate

change implies that the location of refugia varies accord-

ing to the climate as well as to the adaptations of

individual species or populations. We therefore suggest

that, in general, refugia can be classified as either glacial

or interglacial refugia. Glacial southern refugia are the

traditional low-latitude refugia for temperate taxa best

known from the work of Hewitt (1996, 1999, 2000),

whereas interglacial polar refugia harbour cold-adapted

taxa at high latitudes during warm periods, such as the

interglacial we are in today. However, owing to the com-

plex structure of environments and habitats across

space, it is also proposed that cryptic northern refugia

exist during glacials and equivalent cryptic southern refu-

gia during interglacials. The existence of the former has

had increasing support from phylogeographic (including

ancient DNA) studies of a wide range of organisms,

while cryptic southern refugia can be seen in areas such

as the Alps today. An additional dimension is the ocea-

nic/continental gradient, with continental-adapted taxa

in refugia during interglacials.

In general, cryptic refugia are smaller in size than

southern glacial or polar interglacial refugia. Further-

more, the length of time during which organisms are

isolated in refugia differs between cold and temperate

taxa, since glacials are longer than interglacials. This dis-

parity among different types of refugia, as well as the

individualistic nature of species’ responses to climate

change, has several evolutionary implications. For

example, individualism may lead to new ecological associ-

ations and interactions, which in themselves can impose

novel selective pressures on populations (Hewitt 1996,

2000, 2001), Stewart (in press). Also, populations inhab-

iting small refugia, such as populations of temperate

species in cryptic northern refugia, are more likely to

become extinct. Such populations would not then act as

sources of expansion on climatic amelioration (Sommer &

Zachos in press). Paradoxically, however, long-term iso-

lation of small populations can lead to rapid population

divergence. Combined with the novel selection pressures

in peripheral refugia, this could potentially lead to specia-

tion. We therefore propose that isolation of temperate

species in cryptic northern refugia may have played an

important role in the origin of Arctic species.
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