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Advances in qPCR technology allow studies of increasingly large systems comprising many genes and
samples. The increasing data sizes allow expression profiling both in the gene and the samples dimension
while also putting higher demands on sound statistical analysis and expertise to handle and interpret its
results. We distinguish between exploratory and confirmatory statistical studies. In this paper we dem-
onstrate several techniques available for exploratory studies on a system of Xenopus laevis development
from egg to tadpole. Techniques include hierarchical clustering, heatmap, principal component analysis
and self-organizing maps. We stress that even though exploratory studies are excellent for generating
hypotheses, results have not been proven statistically significant until an independent confirmatory
study has been performed. An exploratory study may certainly be valuable in its own right, and there
are often not enough resources to report both an exploratory and a confirmatory study at the same time.
However, exploratory and confirmatory studies are intimately connected and we would like to raise that
awareness among qPCR practitioners. We suggest that scientific reports should always have a hypothesis
focus. Reports are either hypothesis generating, from an exploratory study, or hypothesis validating, from
a confirmatory study, or both. In either case, we suggest the generated or validated hypotheses be spe-
cifically stated.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Modern scientific endeavours invariably involve reproducibil-
ity. To cite Werner von Siemens (1816–1892), ‘good science needs
good measurement’. As scientific questions continue to be re-
solved, the complexity of the remaining scientific questions in-
crease. Complex scientific questions are likely to be obscured by
unrelated processes that we as scientists often ascribe to random
variables or noise. A distinction between the desired scientific
knowledge and unrelated noise often requires statistical analysis.
Although this is simple in principle, human intellect does not nat-
urally seem to be optimally suited to parse such relationships and
mistakes are often made because of subjective decisions. In this pa-
per we will therefore attempt to describe some basic checkpoints
that would facilitate correct handling of exploratory statistical
ll rights reserved.
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analyses. We will also describe several alternative statistical meth-
ods relevant for pattern recognition by multivariate data analysis
that are common for complex scientific questions.

A central checkpoint in statistical analysis is the hypothesis. We
distinguish between an exploratory statistical study, if the aim of
the study is to generate one or several hypothesis from a given data
set, and confirmatory statistical study, if the aim of the study is to val-
idate a given hypothesis or set of hypotheses by collection and ana-
lysing a new data set. We advocate that all statistical studies should
provide a clear description of the hypothesis used, in case of a confir-
matory study, or generated, in case of an exploratory study.

The statistical rigour required in a confirmatory study is very
strict since we want to use the results for validation. Prior to collec-
tion and any testing of data, we need to define the hypothesis,
what statistical test we are going to perform and what criteria
we are going to use to judge whether we can or cannot reject the
hypothesis, including whether the test will be one- or two-sided.
It is important to make these definitions before data collection be-
cause a posterior selection of hypotheses, test and/or criteria may
bias the conclusion and/or lead to an unintentional introduction of
multiple testing which may compromise any statistical signifi-
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cance found in this manner. In contrast to a confirmatory study, an
exploratory study does not need to be defined prior to data collec-
tion, since the purpose of the exploratory study is to formulate a
suitable hypothesis. Any approach that results in such a hypothesis
may be a valid approach. However, it will not be clear whether the
newly found hypothesis itself is statistically valid on the desired
population and in the desired experimental setting until it has
been validated in a confirmatory study.

Many mathematical and computational tools are available for
exploratory studies. In this paper we will focus on visualization,
clustering and partition methods for this purpose.

1.1. Embryonic development in Xenopus laevis

As an example to illustrate the power of visualization, cluster-
ing and partition methods for exploratory studies we will use mea-
surements on transcripts coded by genes that are crucial for early
embryonic development of African clawed frogs, Xenopus laevis.

RNA expression can be studied on two levels: as a spatial RNA
distribution and a temporal RNA expression. The spatial expression
profiles can be measured within different organs or different parts
of the embryo [1], while temporal expression profiles are deter-
mined as function of development stage or time. Temporal expres-
sion profiling during early development of mammalian systems is
limited by the small amounts of protein and RNA (few hundreds of
pg per embryos) and time and money consumed preparing em-
bryos. In contrast hundreds or thousands of embryos can be easily
obtained by stimulating and in vitro fertilizing a single amphibian
female. Further, amphibian eggs and embryos, such as those of
Xenopus laevis, contain several lg of total RNA and proteins [2].
These features have made Xenopus laevis one of the most popular
organisms for developmental studies. Two groups of mRNAs can
be distinguished, based on temporal expression. One set, called
maternal, is synthesized during oogenesis inside the mother’s
body. Proteins coded by maternal genes often have many roles in
oogenesis and early developmental processes. Maternal mRNA
molecules are translated into functional proteins in the oocyte dur-
ing oogenesis and in the embryo after fertilization. At some point,
the embryo reaches a stage when specialized gene products are
needed and zygotic transcription is initiated. This point is called
mid-blastula transition (MBT) and takes place at different develop-
mental stages in different organisms. For example, mammalian zy-
gotic transcription usually initiates after few cell divisions, while in
Xenopus MBT occurs after 12 cell divisions in the gastrulation stage.
The genes expressed after MBT are called zygotic genes.

Thirty-one genes that are crucial for early development of Xeno-
pus were selected for high throughput qPCR expression profiling.
Genes such as VegT, disheveled, p53, ubiquitin (ubc), Vg1, Xdazl,
Xcad2, Oct-60, DEADSouth, alpha-tubulin, Stat3, U3-snoRNA, cyto-
keratin, Est1, Xmam1, An1, An2, 18S rRNA, mitochondrial cyto-
chrome C (mt-cytC) and Wnt11 were previously found to be key
components for early development and expressed in oocyte [3].
Similarly we selected genes, which were found to be important
for developmental stages around and after MBT and therefore pre-
dicted to be expressed, such as siamois, chordin, HNF-3beta, Pax6,
goosecoid, derriere, follistatin, cerberus and N-CAM. Thirteen
developmental stages in biological triplicates from oocyte to tad-
pole were collected for high throughput qPCR analysis.

Primers and samples were loaded into a microfluidic chip, run
and analyzed in the high-throughput BioMark qPCR platform [4].
Chips for dynamic qPCR analysis, which were used in our experi-
ment, allowed us to run 48 cDNA samples times 48 primer pairs in
parallel in a single run. Each run thus resulted in 2304 independent
reactions with all cDNA sample:gene primer pair combinations. The
analysis software GenEx developed by MultiD Analyses AB [5] was
used for analysis and visualization of the data. Many other softwares
are available to perform the studies presented herein; for instance,
SPSS (SPSS Inc.), StatGraphics (StatPoint Technologies, Inc.) or
open-code R and/or Matlab programs which can be downloaded
freely, to mention but a few which are employed commonly.

1.2. Paper outline

The data analysis and visualization is performed using the anal-
ysis software GenEx, developed by MultiD Analyses AB [5].

Data measured with the BIOMARK platform are read and auto-
matically annotated by the GenEx software. Analysis then starts
with data preprocessing. This consists of normalization, imputa-
tion of missing data, removal of outliers, and scaling of data. Here
normalization means scaling with endogenous reference or control
samples to reduce systematic variations in the data. Scaling refers
to rescaling needed to make the data analysis algorithms well con-
ditioned. For example, mean centering of the data.

Some insight can be gained by visualizing the preprocessed data
without further analysis. We will discuss visualization before pro-
ceeding to clustering. For clustering, we will consider four different
methods to group the genes: three agglomerative hierarchical clus-
tering methods, a divisive clustering approach, clustering by prin-
cipal component analysis (PCA), and clustering by self organized
maps (SOM).
2. Description of method

2.1. Sample collection and RNA isolation

Xenopus laevis females were stimulated by 500 U of hCG and
kept overnight at 22 �C. Males were anesthetized in 0.1% tricaine
solution for 20 min and testes were removed. A homogenized tes-
tes solution was used for in vitro fertilization by pouring to freshly
squeezed oocytes. 0.1� Marc’s Modified Ringers (MMR) medium
was added after 5 min incubation at room temperature. After
about 30 min after fertilization MMR medium was replaced by
2% cysteine solution to remove jelly coat. After short incubation,
cysteine solution was removed and embryos were washed five
times with 0.1�MMR solution. Thereafter the developing embryos
were kept in 0.1 MMR at 25 �C.

Xenopus laevis embryos were staged according to [6]. Three sets
of embryos (three embryos from the same female in each set) were
collected from developmental stages 1, 2, 5, 6.5, 9, 10, 11, 13, 15,
21–22, 24–25, 38 and 44 and frozen at�70 �C. Total RNA from each
sample was extracted using the RNeasy Mini kit (Qiagen) according
to the manufacturer’s instructions, including on column DNase
treatment. Total RNA was eluted into 30 ll of elution buffer. Con-
centration of total RNA was measured with a Nanodrop instrument
(Thermo Scientific). The RNA quality was analyzed on an Experion
system (Bio-Rad).

2.2. Reverse transcription

cDNA was produced starting with 100 ng of total RNA, 1.5 ll of
mixture 10 lM oligo-dT and 10 lM random hexamers (1:1) and
water. The total volume was 6.7 ll. After incubation at 72 �C for
10 min, 100 U of MMLV reverse transcriptase (Promega), 12 U RNa-
sin (Promega), 5 nmol dNTP and 2 ll buffer (5�) were added to a
total volume of 10 ll, and incubated at 37 �C for another 70 min.
The product was subsequently diluted to 100 ll and frozen.

2.3. Primer design and preamplification

Primers for the amplification of 31 selected genes were de-
signed using Primer3 [7] and Beacon Designer (Premier Biosoft).
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Primers’ specificities and assay efficiencies were tested on control
cDNA (mixture of cDNA from the three developmental stages). Cri-
teria to accept a primer pair were: specific amplification of control
cDNA with Cq lower than �35, one peak in melting curve analysis,
and no amplification of negative controls.

Preamplification PCR was run in 20 ll containing 2 ll of cDNA,
1 ll of all forward and reverse primers (500 lM each), 10 ll of Sig-
ma A mastermix (kindly provided by Sigma, not yet a commercially
available product) and water. CFX 96 cycler from Bio-Rad was used
for preamplification with the cycling conditions: predenaturation
at 95 �C for 2 min., followed by 14 cycles (95 �C 15 s., 59 �C
1 min. and 72 �C 1 min.). Product of the preamplification was di-
luted from 20 to 80 ll (4�) and stored at �20 �C. Preamplification
efficiency was validated by comparing qPCR results of template
that was and was not preamplified. Differences in Cq values be-
tween preamplified and not preamplified samples were similar
for all genes [8], reflecting minimal bias and thus confirming the
reliability of the preamplification.

2.4. High throughput qPCR performed on BioMark system

For qPCR analysis using the BioMark dynamic array (Fluidigm) a
cDNA sample reaction mixture and a primer reaction mixture were
prepared. The sample reaction mixture had a final volume of 5 ll
and contained 1 ll of cDNA, 0.5 ll of SYBR Green Sample Loading
reagent (Fluidigm), 2.77 ll Sigma A mastermix (Sigma, not pro-
vided yet), 0.165 ll of Chromophy, diluted 1:25 (TATAA), 0.025 ll
of ROX (Invitrogen) and 0.1 ll of JumpStart DNA Taq polymerase
(Sigma). The primer reaction mixture had a final volume of 5 ll
and contained 2.5 ll of Assay Loading reagent (Fluidigm) and
2.5 ll mixture of reverse and forward primers corresponding to a
final concentration of 10 lM. The chip was first primed with oil
solution in the NanoFlex™ 4-IFC Controller (Fluidigm) to fill con-
trol valves. Bubbles were carefully removed from 5 ll of preampli-
fied cDNA in sample reaction mixture and loaded into the sample
wells, and 5 ll of the primer reaction mixtures was loaded into
the assay wells of the dynamic array. The dynamic array was then
placed on the NanoFlex™ 4-IFC Controller for automatic loading
and mixing. After about 55 min the dynamic array was transferred
to the BioMark qPCR platform (Fluidigm). The cycling program was
3 min at 95 �C for preactivation, followed by 30 cycles of denatur-
ation at 95 �C for 15 s, annealing at 60 �C for 20 s, and elongation at
72 �C for 20 s. After completed qPCR melting curves were collected
between 60 and 95 �C with 0.5 �C increments.

2.5. qPCR basic data analysis

An automatic exposure time with 72 �C calibration temperature
was set up for measurement of fluorescence. Fluorescence signals
were measured in the two channels: ROX and FAM-MGB. The
raw FAM fluorescent data were normalized to the ROX signal. A
linear baseline correction was used and the same threshold level
was used for all assays. Quality threshold was set to 0.65.

2.6. Data preprocessing

qPCR data are frequently normalized by one of several options,
including the expression of reference genes, number of cells,
weight of tissue, DNA/RNA spike and total RNA concentration [9].
Expression of common Xenopus laevis reference genes in temporal
developmental studies was found to be highly variable and unsuit-
able for normalization [10]. Endogenous reference genes are often
powerful ways of reducing confounding variability introduced by
technical handling. By not using endogenous reference genes, we
emphasize careful technical handling. It may be more challenging
to verify studied effects under these conditions, although it is cer-
tainly possible given that the studied biological variation is suffi-
ciently larger than the confounding variation.

PCR products that gave unacceptable melting curves were clas-
sified as off-scale. Furthermore a cut-off of 28 cycles was used, and
all Cq’s above 28 were treated as off-scale. The limit of 28 cycles
was chosen due to our experience of this as a limit of reliable
detection of true products for our BioMark instrument given the
prior preamplification step. Measurements above 28 cycles were
therefore judged to be extra sensitive to experimental handling er-
rors. Off-scale Cq values were removed from the data set and sub-
sequently treated as missing data. Patterns in remaining replicates
indicated that missing data were due to experimental handling er-
rors rather than concentration limiting errors. The information
contained in the biological replicates was used to replacing missing
data by the average of remaining biological replicates when avail-
able. If all biological replicates gave missing data, they were as-
signed the highest measured Cq for that particular gene +1. Since
the highest measured Cq of a truly positive sample can be assumed
to be the limit of detection (LOD) for that particular gene, assigning
Cq(LOD)+1 to the off-scale samples corresponds to a concentration
that is half of the LOD. Being below LOD is not equivalent to the
sample being truly negative, because of sampling ambiguity.
Hence, this is a rational correction of off-scale data for downstream
processing of the results. The correction was further validated by
reanalyzing the data assigning Cq(LOD)+2 to the off-scale measure-
ment. This gave indistinguishable results evidencing that the cor-
rection does not affect the conclusions reached. How to deal with
missing (outlying) data is a hot topic in statistics as any approach
involves ‘inventing the datum’ to some extent. The use of the aver-
age of the remaining values or, better, their mean assures that, at
least, we do not disturb the major patterns on the dataset, which
many times seems reasonable. Nevertheless, the reader should
take into account that many other methods exist to cope with this
difficult issue.

The relative expression among samples was calculated as [11]:
RQ ¼ 2Cqmin�Cq

DCq values were calculated for each gene Cq by subtracting it
from the lowest sample Cq and then converting the difference to
linear scale as shown in the equation above. These relative quanti-
ties (RQ) indicate the level of expression, in each sample, of a par-
ticular gene relative to the sample in which the gene has highest
expression. Hence, the RQ of the sample with highest expression
for a particular gene is set to one and all other samples for that
gene have RQ < 1.

Data must be normally distributed for analysis with parametric
tests, such as the Student’s t-test, linear regression, and ANOVA. If
data transformed to RQ is normal distributed, further statistical
analysis of data on this format may be preferred. However, gene
expression data are usually not normal distributed when expressed
as relative quantities, but usually become normal distributed by
logarithmic transformation to fold differences (FD). Traditionally,
log base 2 is used:
FD ¼ log2 RQð Þ

Once the data has been transformed, it is, then, required to
asses that outliers are not present into the series and, so, that nor-
mality is not clearly violated and that the parametric tests can be
applied. The Grubbs’ test [12–14] is generally recommended. For
statistical analysis purposes fold differences are equivalent to the
corresponding DCq values. However, for visualization purposes,
the fold differences are preferred since they provide useful control
over the relative pivot point as defined in the RQ transformation
step.
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2.7. Data pre-treatment

In general we analyze data with a hypothesis (or objective) in
mind. This may have been determined a priori and our ambition
is to validate it (confirmatory study) or our ambition is to browse
through the data to propose a new suitable hypothesis (explor-
atory study). Regardless of whether the hypothesis is known a pri-
ori or not, we often know that some sort of comparison will be
needed to study our data. To emphasize certain aspects of such a
comparison it is therefore often appropriate to remove effects that
may be present on the data, typically due to the different scales
and ranges of variation of the genes. This requires scaling the data
before further analysis. Here we describe two options: mean cen-
tering and autoscaling [11].

Genes are expressed at very different levels. Most genes have
only a few transcripts per cell, while some few have tenths of thou-
sands. In an analysis the few highly expressed genes will have
much higher weight and may totally dominate the result. If this
is not desired, the effect of the genes expression levels can be re-
moved by subtracting the mean expression of every gene to the
corresponding gene.

FDMC ¼ FD� FD

Such transformed data are called mean centered. For mean cen-
tered data a certain deviation from normal (=mean) expression has
the same weight independently of the expression level (or scale) of
that gene.

Low expressed genes may show higher relative standard devia-
tion (coefficient of variation) than high expressed genes, but hardly
normal standard deviation. While a low abundant gene present in
less than 10 copies can have standard deviations of perhaps 3–5
copies, a high expressed gene present in 100.000 copies will have
a standard deviation of at least a few thousand copies. To remove
also the effect of the magnitude of the change, data are further di-
vided with the standard deviation:

FDAS ¼
FD� FD

SD
¼ FDMC

SD

These new data are called autoscaled. An important drawback
of autoscaled data is that subjects which vary randomly are given
the same importance as subjects with systematic information be-
cause all variables are scaled to unit variance. Genes, whose
expression is not sensitive to the studied parameters, should there-
fore be avoided, since they contribute only with noise to the
analysis.
2.8. Direct visualization methods

As described in the introduction, our goal with the present re-
port is to illustrate how an exploratory study can produce one or
several testable hypotheses for future confirmatory statistical anal-
yses. A hypothesis can be generated in many ways; however, it
stands to reason that a good visualization improves a researcher’s
chances of proposing a good hypothesis. Here we distinguish be-
tween direct visualization methods that visualize the pre-treated
or raw expression values of each (gene or sample) subject in the
data set. Later we will see that visualizations of indirect descrip-
tors, such as similarity measures or selected linear combinations
of expression values, of the data set may be useful alternative ways
to illustrate the data set.

One of the direct visualization tools is the scatter plot. In the
scatter plot a subject (a sample or an mRNA target) is represented
by a point in a coordinate system based on the expressions on each
coordinate axis. However, due to human sensory limitations only
two or three dimensions can conveniently be visualized in this
way.

2D and 3D-line plots are ways to visualize one or several expres-
sion profiles. It is particularly useful to present trend studies where
expression is measured as a function of time, drug load or other
metric variable. However, when handling many and large expres-
sion profiles it may be difficult to distinguish features in such a
plot. Once groups in the data set have been identified, typically
by other means, the profiles in the trend plot can be coloured to
emphasize different trend groups.
2.9. Hierarchical clustering methods

From a technical point of view, clustering can be performed
either agglomeratively (i.e., by iteratively joining subjects (and
small clusters) to form increasingly larger clusters, until all sub-
jects have been accounted for in a comprehensive group), this is
called Hierarchical clustering, or divisively (i.e., by iteratively break-
ing up clusters until only individual entities remain), this is called
Divisive clustering. The latter option is not used frequently despite
advanced algorithms exist, among them the ‘k-means’ and the
‘medoids’ ones. Both are partitioning methods in the sense that
groups are found out from the initial overall set of data (which ini-
tially constitutes one group). The two are closely related and differ
in how they minimize the distances, being the medoids method less
sensitive to outliers. Medoids can be defined as those objects of a
cluster, whose average (dis)similarity (mathematically, similarity
and dissimilarity are closely related) to all the objects in the cluster
is minimal; i.e., they are the most centrally located point in each
cluster. The medoids or ‘partitioning around medoids’ (PAM) algo-
rithm clusters the objects (expression profiles, samples, etc.) into
any of k clusters according to their (dis)similarity to each medoid.
Its major difficulty is that k has to be decided in advance by some
other means. PAM has been used successfully in the context of
gene expression profiling [15,16]. Nevertheless, as agglomerative
methods are employed much more frequently than the divisive
ones, we will focus on them.

Clustering requires the selection of both a measure of similarity
between samples (or genes) and a clustering algorithm.
2.10. Similarity measures

Clustering techniques are based on predefined criteria of simi-
larity. In one of its most intuitive forms similarity is measured just
as distances between points in the multidimensional space that is
described by the expression vectors of assay samples or target
genes. In fact, similarity has to be calculated as the inverse of the
distance (the higher the distance, the lower the similarity). Note
that it is equally possible to cluster samples (defined by the mea-
sured genes) and variables themselves (in this case the genes are
grouped as a function of their expression throughout the different
samples). To generalize the explanations, the term ‘subject’ will be
used here to indistinctly refer to samples and variables.

There are many ways to mathematically define distance and,
unfortunately, no ‘golden rule’ can be given for a particular applica-
tion. In general, the scientist has to try different options and select
the most suited one (to what he/she is looking for). A note of cau-
tion is needed here as this does not mean that the scientist has to
use the clustering methods to ‘demonstrate’ its preliminary ideas;
recall that clustering methods are intended to discover patterns
among the datasets and, accordingly, something unexpected (or
‘new’ groups) should be studied carefully [17]. Here only some
common distances will be discussed. The Euclidean distance is very
intuitive as it generalizes the well-known Pythagoras’ theorem.
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E12 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

x1i � x2ið Þ2
vuut

E12 is the distance between samples 1 and 2 and xji represents
the expression of each of the n genes (‘i’) measured on each sample
(‘j’). Small differences between each of the expression measure-
ments xji result in a small distance E, which in turn can be inter-
preted as a measure of high similarity.

Another class of similarity measure is the correlation coeffi-
cient. In contrast to the distance measures correlation coefficients
emphasize variational relationships between expression vectors.
By variational relationship we mean that the differences between
each of the expression measurements need not be small, but vary
consistently throughout the sample vectors. For expression profil-
ing purposes this is particularly useful to detect positive as well as
negative correlations. The classical Pearson’s correlation coefficient
for two samples x and y, is [12,13]
rxy ¼
n
Pn
j¼1

xy�
Pn
j¼1

x
Pn
j¼1
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Here rxy is the correlation between genes expression vectors of

samples x and y where xj and yj indicate the expression values of
the jth gene in the data set of n genes for the x and the y samples,
respectively.
2.11. Clustering methods

As seen, measuring similarity between pairs of samples or vari-
ables (expression profiles) is relatively simple using a distance
measure. Once samples (genes) with the highest similarity (lowest
distance) were found, they are merged in a ‘cluster’ and the process
is repeated. However, similarity measures between clusters need
further definitions. To address this issue, a clustering algorithm
has to be selected by the analyst. Four common options are re-
viewed here:

In the single linkage (or nearest neighbour) method groups are
fused according to the distance between their nearest subjects,
which are taken as representatives of their corresponding groups.
The complete linkage (or furthest neighbour) method, behaves in
the opposite way, as the distance between groups is now defined
as the distance between their most remote subjects. The un-
weighted pairs or average linkage defines distance between groups
as the average of the distances between all pairs of individuals in
the two groups. It is sometimes also referred to as UPGMA (Un-
weighted Pair-Group Method using Arithmetic averages) [18,19].
It is a compromise between the single and complete linkages.
Ward’s method is more complex as it calculates the increase in
the variance of the distances for the different possibilities of join-
ing clusters. For each possibility, internal variance is computed as
the sum of distances between each sample in the group and the
group’s centroid. The clustering that yields the lowest increment
on the sum of the internal variances is then selected. Note that
the Ward’s method considers cluster analysis as an analysis of
the variance problem, instead of using distance metrics. Therefore,
a sample that was initially classified in a group might be removed
from that group in a next step. Ward’s method tends to produce
compact clusters. In contrast, the single linkage tends to produce
elongated groups, which sometimes are hard to interpret. The
complete linkage tends to produce large numbers of groups.
2.12. Clustering visualization

The output of the clustering method is a figure which resembles
a tree, which is called dendrogram, and it displays the distances
among the individuals and the groups being formed. By careful
selection of appropriate similarity measures (Table 1), and cluster-
ing algorithms (Table 2) the analyst may thus be able to highlight
different aspects of the data set. Using the characteristics of differ-
ent similarity measures and clustering algorithms (Tables 1 and 2),
the significance of the groups has to be interpreted by the analyst
and, so, explain the rationale of each group (i.e., what differentiates
a group from the others). An advantage of the hierarchical cluster-
ing compared to the direct visualization methods is that a high
dimensionality (a large number of genes and samples) of the data
set is reduced to a convenient two-dimensional representation of
subject similarities.

Hierarchical clustering can be performed either for the genes
(comparing samples’ expression profiles) or for the samples (com-
paring genes’ expression profiles). The two classifications can be
combined to produce a heatmap of the data set. The heatmap is a
colour-coded two-dimensional mosaic that describes the whole
expression matrix (samples vs. gene targets), each tile coloured
with a different intensity according to the pre-processed data. In
addition, the data set is reordered in each dimension of the mosaic
according to the dendrograms calculated for samples and genes,
respectively. The heatmap literally adds another dimension of
information presented by the dendrogram, which may facilitate
its interpretation.

2.13. Principal component analysis and its visualization

Principal components analysis, PCA, is a powerful approach to cir-
cumvent the dimensionality problem of scatter plots by projecting
the high-dimensional data set onto two or three dimensions for
easy visualization. Here, the original coordinate system of the data
set (i.e., the measured expression profiles) is projected onto a new
space with a lower number of new variables, so called principal
components (PC’s) or factors. Each PC is a linear combination of
the subjects. Thus, when illustrating samples, each coordinate axis
is a linear combination of genes’ expression levels from the original
measurements, and when illustrating genes each coordinate axis is
a linear combination of sample expression levels from the original
measurements.

By mathematical definition, the PC’s are extracted in successive
order of importance. This means that the first PC explains most of
the information (variance) present in the data, the second less, and
so forth. Therefore, we can use the first two or three PC coordinates
(termed scores) not only to obtain a projection of the whole data
set onto a conveniently small dimension, but also to obtain the
projection that accounts for the most relevant variability in the
data set. Variance from experimental design conditions is expected
to be systematic, while confounding variance is expected to be ran-
dom. Since the last PC’s explain a very low amount of information,
they can be considered to include noise or random information and
can therefore be ignored. In this way, PCA can be a very efficient
tool to separate systematic effects from noise.

2.14. Self-organizing maps

The self organizing map, SOM, or Kohonen artificial neural net-
work, approach is an advanced iterative method based on compar-
isons, rather than an algorithm as used in hierarchical clustering
and PCA. It is based on the use of artificial neural networks and
their capability to ‘learn’, i.e., to change their internal values (called
weights) to be as similar as possible to the measured samples. It can
be used to visualize multivariate data sets in two dimensions (the



Table 1
Similarity measures.

Similarity measure Effect

Euclidian distance Favors direct one-to-one similarity. Results depend on scaling of expression profiles.
Pearson correlation Emphasize variational relationships between expression vectors. Detects both positive and negative correlations.

Table 2
Clustering methods.

Clustering method Effect

Single linkage It has a chaining effect, useful for extended clusters with irregular shapes.
Complete linkage Produces small compact clusters.
Ward’s method Produces very small and compact clusters.
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graph obtained is called a Kohonen map). For the SOM approach,
the analyst defines the size of a matrix of nodes, typically in two
dimensions. The SOM algorithm then starts by associating the
weights of each node with a random expression profile of the same
dimensions (i.e., number of genes, if the object of study is gene
expression profiles or number of samples, if the object of study is
samples expression profiles) as the data set to be analyzed. Next,
each expression profile in the real data set is sequentially assigned
to the node that most resembles its own profile. The assigned
expression profile is allowed to influence the expression profile
in the node and its neighbours by a weighted factor that is large
for the central node and progressively smaller for more distant
neighbours. The procedure of assigning expression profiles and
allowing them to influence the values of the weights of the related
neuron is repeated iteratively until convergence is achieved. Final-
ly, each node receives a code, according to the sample(s) that was(-
were) assigned there and this is plotted in a 2D plot (the map),
where the distribution of the samples can be visualized and, hope-
fully, the groups interpreted.

An advantageous property of the SOMs relative to, for example,
PCA, is that the distances between the expression profiles of neigh-
bouring nodes in the map are non-linear. This property may allow
detection of otherwise obscured similarity patterns. Another
advantage of the SOM is that the size of the node map may be ad-
justed to seamlessly transition from clustering (no prior assump-
tions of number of clustering classes) by using a large node map
to partitioning (pre-defining a number of clustering classes) by
using a small node map. For example by using a node map of
dimensions 31 � 31 on a data set with 31 expression profiles,
plenty of space is available for the process to distribute the expres-
sion profiles and the resulting clustering structure is thus free from
any restraints. In this situation individual relationships between
expression profiles can be studied under favourable conditions,
but boundaries between groups may be difficult to discern. On
the other hand, if a node map of dimensions 10 � 1 is used on
the same data set the process is restrained to a maximum of 10
partitions. In this case, individual relationships between expres-
sion profiles are less apparent, but boundaries between groups
are highlighted.
2.15. Analysis of visualization results

As when applying any chemometrics or bioinformatics tech-
nique, validation is a key stone. One has to be aware that by their
own nature pattern recognition techniques (like clustering) yield
results that, sometimes, may be surprising for the scientist. Even
though hierarchical dendrograms and heatmaps provide powerful
visualizations of data sets, they hold drawbacks in their own nat-
ure. This problem is well-known in clustering and can only be de-
tected by close examination and interpretation of the final
dendrogram and, probably, by repeating the clustering using dif-
ferent distances and clustering algorithms.

Many studies have been devoted to evaluating clustering qual-
ity. Some common terminology includes compactness, connected-
ness and spatial separation [17].

Compactness is a consequence of various clustering algorithms
tendencies to keep intra-cluster variation small. Algorithms and
parameters that push in this direction have a tendency to give re-
sults that are appropriate for spherical clusters, but may fail if the
clusters have more complex shapes. Clustering algorithms that
implement parameters to favour connectedness tend to give results
that are appropriate for arbitrary shaped clusters, but lack robust-
ness when there is little separation between clusters (typically, this
happens with the single linkage method). Spatial separation is
rarely used by itself as an algorithm objective, but is usually com-
bined with the other objectives above.

In practical terms it is highly difficult to evaluate these param-
eters with an unknown dataset and, therefore, in this paper our
ambition was to perform an exploratory study. We are therefore
not interested in defining any objective measure of cluster quality,
but we will use the terminology described above to subjectively
describe some patterns that may help us propose hypotheses for
future confirmatory studies. Many times we are mining in our (al-
most unknown) dataset and a multitude of different methods can
be applied to draw conclusions. A careful and sound biological
explanation of the results is mandatory before accepting any mod-
el. Recall always that, then, your model will be accepted under the
explicit condition that the resulting conclusions are nothing more
than hypotheses that will need to be analyzed in an independent
confirmatory study before they can be considered truly validated.
3. Results

Many scientific questions remain on early development of
Xenopus laevis. Typical questions may be: What is the function of
each or gene? At what phase of development are they active?
How are they regulated? How do they influence each other? With
the increased availability of sequence data and gene-specific char-
acterizations, large scale investigations into these matters are
becoming feasible. However, with the increased amount of data
we also face new challenges. Specifically: the challenge of finding
new, testable, and biologically relevant hypotheses. Here we used
the data set of 31 selected genes, measured at 13 stages through-
out Xenopos laevis development, to illustrate how hypotheses
may be generated from a multidimensional data set in an explor-
atory study.

Data organization is arguably one of the most time-consuming
steps in large scale multivariate data analysis. The separate analy-
sis algorithms can typically be performed quickly at a click of a
button once input data has been arranged in appropriate format.
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In our case, we have collected expression data of 31 genes in 13
developmental stages. Biological triplicates were collected for each
stage. The triplicates were organized in the data set under the sam-
ples dimension since each replicate can be said to be of the same
gene, but not of the same sample. The full data set thus forms a
matrix of dimension 39 � 31. It is also useful to assign classes,
when available, to the data set. GenEx allows for classification col-
umns and rows to classify samples and genes. Analysis methods
applied to the data read the data in rows, columns or the whole
matrix. Analysis methods that are applied to either rows or col-
umns thus analyze the data from either the gene or the sample per-
spective. By transposing the data matrix, analyses can be shifted
from gene to sample perspective or vice versa. In the case of the
Xenopus data we have clear classification of the samples as the
mid-blastula transition is a well-known transition state during
development. The 13 samples can therefore readily be classified
as early, midblastular or late stages. Fig. 1 shows a 3D line-plot
of sample expression profiles for each of the Xenopus developmen-
tal stages. To reduce cluttering and improve visibility the biological
replicates have been averaged for Fig. 1. Off-sets may be present in
the data sets for technical reasons, unrelated to the biological ques-
tions of interest, in the expression profiles of each sample. To fur-
Fig. 1. A 3D line plot of mean centered sample expression profiles in Xenopus laevis. Red e
stages.
ther improve visibility and remove off-sets we therefore mean
centered the data for Fig. 1. The colours of the 3D lines correspond
to the three classes of developmental stages: early (red), midblast-
ular (blue) and late (green) stages. Features that are characteristic
for each group are readily visible and the distinction between the
groups is clear although best appreciation for this is achieved on
a computer screen where the 3D line plot can be rotated for im-
proved 3D visualization.

Heatmaps are an alternative representation of expression pro-
files. The mosaic representation of the heatmap in Fig. 2 illustrates
expression amplitude by colour intensities. It is often useful to rec-
ognize patterns in the heatmap mosaic and compare them to the
expression profiles in a 3D line-plot such as shown in Fig. 1. The
birds-eye-view of the heatmap allows this representation to be less
sensitive to information overload and cluttering. In Fig. 2 the bio-
logical replicates have been retained and mean centered in the
samples dimension. Comparisons should therefore primarily be
performed in the samples dimension of the heatmap, i.e., treating
it as a set of columns. For a 3D line-plot this large number of sam-
ples would have obscured any interpretation, but heatmap pro-
duces a very comprehensive overview. In addition, the rows and
columns of the heatmap are organized through hierarchical clus-
xpression profiles are early, blue are intermediate and green are late developmental



Fig. 2. Data with biological replicates, mean centered in the samples dimension. Light yellow corresponds to low expression, dark blue corresponds to high expression. For
brevity, stages 21–22 and 24–25 are indicated by labels 21.5 and 24.5, respectively.
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tering. The dendrograms that indicate the relationships between
the samples (columns) and genes (rows) thus gives additional
information to the comprehensive overview. In our current data
set we see that we have three distinct groups corresponding to
the early (1, 2, 5, 6.5, and 9), midblastular (10 and 11) and late
(13, 15, 21–22, 24–25, 38, and 44) developmental stages. We also
see good reproducibility among the biological replicates, although
some samples (notably sample 1) have variabilities large enough to
make them overlap with several other neighboring developmental
stages.

A heatmap is also very useful to characterize relationships be-
tween genes (Fig. 3). To emphasize the developmental characteris-
tics of the gene expression profiles we average the biological
replicates. This will give us a better estimate of the mean expres-
sion at each developmental stage and also reduce the information
content in the heatmap for a more comprehensive overview. By
autoscaling in the gene dimension we emphasize comparisons be-
tween gene expression profiles (rows in the heatmap), normalized
so that the variability within each expression profile will be equal
between different expression profiles. By inspecting the gene
expression dendrogram on the left side of the heatmap in Fig. 3
we observe that, in the most simple, non-trivial clustering tier,
they are organized into three distinct groups. The topmost genes
(goosecoid, siamois, derriere, cerberus and chordin) have their
highest expression levels primarily at the MBT (midblastular
genes). The genes in the middle group (HNF-3beta to ubiquitin)
have their highest expression levels primarily at the later develop-
mental stages (zygotic genes). These group assignments are sum-
marized in Table 3 and compared to assignments from Kubista
et al. [20]. The bottom group of genes (An1–Wnt11) has high
expression at the early developmental stages (maternal genes).
However, there are also several interesting substructures in this
data set. For instance, the maternal genes disheveled, Xmam1,
Est-1 and alpha-tubulin seem to have an increased expression at
the later stages of development compared to other maternal genes.
Likewise, the midblastular genes goosecoid and siamois seem to
have an increase expression at the developmental stages 38 and
44 compared to other MBT genes. The zygotic genes seem to divide
into two characteristic groups one (genes HNF-3beta to U3-snoR-
NA) of which seems to have rather even expression throughout
the later developmental stages (stages 13–44) and the other (genes
GSK-3beta to ubiquitin) which seem to have a distinct increase in
expression in the last few stages of development (stages 24, 25–
44). These observations may inspire several interesting hypothesis
to be validated in future confirmatory studies.

Now that we have used the heatmap and the associated hierar-
chical clustering to identify groups of genes, we can improve visi-
bility in the 3D line-plot of the gene expression profiles by
colouring each expression profile according to which group it has
been assigned. Fig. 4 shows the autoscaled gene expression profiles
of the Xenopus data set. Without the colour assignments it would
be hard to discern patterns in the data set, but with the colour
assignments the 3D line-plot literally gives another dimension of
detailed information on the expression profiles. Now, we have a
very good idea of what-is-going-on in our data set and, therefore,
are ready to interpret the multivariate models that different multi-
variate techniques can offer us.

As explained above, hierarchical clustering is a way to visualize
similarities in a multidimensional data set. An alternative is to pro-
duce a projection of the multidimensional data onto a two-dimen-



Fig. 3. Data autoscaled in the gene dimension. Samples 1–9 are from early stages in
development, 10–13 are from the Mid-blastula transition, and 14–38 are from late
stages in development. Light yellow corresponds to low expression, dark blue
corresponds to high expression. For brevity, stages 21–22 and 24–25 are indicated
by labels 21.5 and 24.5, respectively.
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sional scatterplot through PCA. The first two principal components
of the mean centered samples expression profiles in the Xenopus
data set is shown in Fig. 5. These two principal components ac-
count for 75.8% of the variation in the data, even though it is only
a two-dimensional representation of a 31-dimensional data set
(each sample vector contain expression measurements from 31
genes). As we saw in the heatmap dendrogram of the samples
expression profiles (Fig. 2), the early, MBT, and late stages tend
to be similar within each group than to members of other groups.
An advantage of the PCA representation over the dendrogram is
that the order of similarities is easier to discern. In Fig. 5 we see
that there is a general trend from the early stages through the
MBT stages to the late stages. However, there are some subpatterns
that may be observed here too. For example, for the genes in this
study it seems that stage 6.5 is more similar to later stages than
stage 9. This we can interpret as a temporary regression in the
development in stage 9 before development proceeds in stage 10
Table 3
Xenopus gene group assignments. Gene names in bold indicate genes assigned to different g
the late group in [20]. GSK-3beta and p53 were assigned to the early group in [20].

Developmental assignment from this
study

Genes also analyzed in Kubista et al. 2006

Early VegT, Vg1, dishevelled

MBT Cerberus, chordin, derriere, goosecoid,
siamois

Late Follistatin, HNF-3beta, N-CAM, GSK-3beta
p53
and beyond. Furthermore, stage 11 seems to constitute a signifi-
cant jump in development compared to the other developmental
stages in this study, as can be seen in the relatively large separation
between this cluster of biological replicates and others. This fits
with our expectations that the MBT is a dramatic transition during
development. Finally, it seems that the Xenopus development goes
through a local extreme around stage 38 before finally settling in
(stage 44) to a state that is more similar to earlier developmental
stages (stages 21–22 and 24–25).

The PCA can also be performed for the gene expression profiles.
Fig. 6 shows that maternal, MBT and zygotic gene groups form dis-
tinct groups in the first two principal components of autoscaled
gene expression profiles from the Xenopus data set. In this case,
the first two PCs account for 80.5% of the total variation in the data.
It is more than what we observed for the PCA in Fig. 5, although in
this case, since we have averaged the biological replicates, the PCA
is based on a 13-dimensional data set (of sample expression mea-
surements). In either case it is a great focus on the systematic var-
iation in the data set on only two easily visualized dimensions. In
Fig. 6, the separation is clear between each group. Neither of the
groups is perfectly connected. The maternal cluster may be inter-
preted to have three subgroups, and the MBT and zygotic groups
may be interpreted to have two subgroups each. There seems to
be a trend of sequential similarities of gene expression profiles
from maternal to zygotic genes with the MBT genes being a sepa-
rate group from this sequence of gene expression profiles. From a
biological point-of-view it may make sense that different genes
are activated and deactivated in sequence as they are required
for each developmental stage. To further evaluate this as a tenta-
tive hypothesis we may take advantage of the inherent strengths
and flexibilities of the SOM. Despite a two dimensional PC scores
plot has been presented here, three dimensional plots can often
be of much use as more information will be taken into account
and, so, interesting features or patterns can appear.

Fig. 7 shows the SOM analogous to the PCA plot in Fig. 6. It is
based on autoscaled gene expression profiles of the Xenopus data
set. The default setting of the SOM in GenEx is a map of size equal
to the number of expression profiles in each dimension. In our case
we have 31 gene expression profile and thus a 31 � 31 matrix of
SOM nodes. An obvious characteristic of the SOM is that the data
points are distributed more evenly across the plot area. This is
due to the fact that the plot area is non-linear and neighboring data
points may be as similar or dissimilar as other data points further
away in a different direction. This cause a greater separation
among data points, and reduces the compactness of the clusters.
With a large node matrix as the one in Fig. 7 it may be challenging
to discover or confirm clustering tendencies. However, an interest-
ing feature of the SOM is that the size of the node matrix can easily
be reduced to funnel the data points into a specific number of
available partitions. Keeping the notion of the tentative hypothesis
of sequential activation of gene expression from the previous par-
agraph, we may suggest a specific organization of the SOM node
matrix. In Fig. 8 we have three representations of 10 � 1 SOM
matrices. By selecting the size of one side of the node matrix to
roups in Kubista et al. [20]. Chordin, derriere, goosecoid, and siamois were assigned to

Genes not analyzed in Kubista et al. 2006

Oct-60, Xcad2, Xdazl, An1, DEADSouth, Otx-1, Xmam1, Est-1, alpha-
tubulin, Wnt11

, An2, Pax6, U3-snoRNA, 18S rRNA, mt-cytC, Stat3, ubiquitin, cytokeratin



Fig. 4. A 3D line plot of autoscaled gene expression profiles in Xenopus laevis. Red expression profiles show maternal genes, green show zygotic genes and blue show
midblastular or unknown genes.
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one we naturally obtain a node structure conducive to investigate
sequential patterns. Because there is an element of random start-
ing points for each SOM generation, the SOMs are not identical.
However, by comparing repeated SOM runs and identifying consis-
tent patterns, the SOMs can be used to propose testable hypothe-
ses. For example, here we find that expression profile of VegT
seem to reach its higher levels before the expression profile of
Otx-1 does. This hypothesis may be biologically sensible since
VegT has previously been associated with mesoderm formation,
and Otx-1 has been associated with brain development [2].

4. Concluding Remarks

From the observations we have made in the current study, we
may propose several hypotheses for further study and potential
validation in future confirmatory studies. Some examples may be:
� The average gene expression during the late stages (21–22, 24–
25, 38 and 44) relative to the average gene expression during the
early stages (1, 2, 5, 6.5, and 9) is higher for Otx-1 than for VegT.

� The expression of mt-cytC is more than 4 times larger during
stage 38 than during stage 24-25.

� The average expression of cerberus is larger during the MBT
stages (10 and 11) than during an average of other developmen-
tal stages (1, 2, 5, 6.5, 9, 21–22, 24–25, 38 and 44).

These examples illustrate how exploratory studies, and clus-
tering and visualization techniques are powerful tools to generate
hypotheses. It may be tempting to draw scientific conclusions al-
ready at this point of the analysis, in particular if the tendencies
in the data seem to be very strong. However, without hypotheses
defined before the study, we need to be mindful that we may,
consciously or unconsciously, be testing a potentially unlimited



Fig. 5. PCA on Xenopus samples (developmental stages), mean centered, each developmental stage represented by triplicate measurements. Early stages in red, MBT
transition stages in blue and late stages in green. For brevity, stages 21–22 and 24–25 are indicated by labels 21.5 and 24.5, respectively.

Fig. 6. PCA on Xenopus genes. Autoscaled in genes dimension, maternal genes in
red, zygotic genes in green and other genes in blue.

Fig. 7. SOM on Xenopus gene expression data with dimensions 31 � 31. Maternal
genes in red, zygotic genes in green and other genes in blue.
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number of hypotheses simultaneously. Testing many hypotheses
simultaneously require corrections of the underlying statistics
parameters in order to maintain overall significance level of the
study [21]. Without these corrections there is a risk that observa-
tions of random events may be interpreted as biologically rele-
vant processes. The generation of hypotheses is nevertheless an
important part of the scientific process. We conclude that we
have many useful tools for hypothesis generation and that statis-
tical validation of new-found hypotheses is an integral part of the
scientific process, even though it may be left to future studies.

Despite the power of the multivariate methods, we would like to
stress that scientist must be aware that their sound knowledge and
scientific skills are critical to validate/interpret/ascertain what they
have found. The many clustering methods, distance metrics, and



Fig. 8. Three SOMs on Xenopus genes with dimensions 10 � 1 show transition from maternal genes (red) to zygotic genes (green). Each SOM pattern is generated from a
process that is influenced by random starting conditions and therefore the SOM patterns do not need to be identical. In the examples here we nevertheless see that there are
consistent patterns in the data, such that the ordering of the gene expression profiles is preserved.
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their combinations, make it too easy to bias the results to a subjec-
tive hypothesis on the data structure/patterns. Key point here is to
be open to discover something unexpected but interesting.
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