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Background: High resolution melting (HRM) is an emerging new method for interrogating and character-
izing DNA samples. An important aspect of this technology is data analysis. Traditional HRM curves can
be difficult to interpret and the method has been criticized for lack of statistical interrogation and arbi-
trary interpretation of results. Methods: Here we report the basic principles and first applications of a new
statistical approach to HRM analysis addressing these concerns. Our method allows automated genotyp-
ing of unknown samples coupled with formal statistical information on the likelihood, if an unknown
sample is of a known genotype (by discriminant analysis or “supervised learning”). It can also determine
the assortment of alleles present (by cluster analysis or “unsupervised learning”) without a priori knowl-
edge of the genotypes present. Conclusion: The new algorithms provide highly sensitive and specific auto-
calling of genotypes from HRM data in both supervised an unsupervised analysis mode. The method is
based on pure statistical interrogation of the data set with a high degree of standardization. The hypoth-
esis-free unsupervised mode offers various possibilities for de novo HRM applications such as mutation
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discovery.
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1. Introduction

High resolution melting (HRM) is a new method for monitoring
DNA dissociation (“melting”) kinetics. HRM is an entirely closed-
tube procedure requiring only a generic DNA intercalation dye.
As double-stranded DNA samples (for HRM analysis typically PCR
products) dissociate with increasing temperature, dye is progres-
sively released and fluorescence diminishes. Fluorescent measure-
ments are collected at corresponding temperature increments and
plotted as a “melt curve”. Curve shape and position are character-

Abbreviations: HRM, high resolution melting; SNP, single nucleotide polymor-
phism; PC, principle component; LDA, linear discriminant analysis; NTC, no
template control.
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istic of each sample allowing them to be compared and discrimi-
nated. Even a single base change between samples can be readily
detected and identified [1,2].

HRM discriminates genotypes by comparing the relative posi-
tion and shape of melt curves [2]. These changes reflect a sample’s
DNA sequence, random generation of heteroduplexes (i.e., mis-
matched strand duplexes that occur in samples containing more
than one sequence variant), buffer conditions, and other reaction
variables [1,2].

Enhanced and automated HRM data processing methods are
needed, particularly for larger sample cohorts. Current HRM soft-
ware plots variations in melt curve shape and position, however,
the ability to statistically quantify differences is not supported.
At present, the data analysis procedure typically uses melt curve
fluorescence normalization followed by a simple subtraction (dif-
ference) plot generated from a known control sample. Although
the method allows automated genotyping, no formal statistical
information is provided to indicate the likelihood an unknown
sample is of a known genotype (discriminant analysis or “super-
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vised learning”) nor do current methods allow the number of al-
leles present to be determined (cluster analysis or “unsupervised
learning”), useful in the discovery of new sequence variants.

Here we describe algorithms for reliable and relevant auto-
mated genotyping of HRM data in supervised and unsupervised
mode using a set of advanced statistical methods such as principal
component analysis in a software package we call ScreenClust.

2. Materials and methods
2.1. HRM data sets

All analyses were performed with a prototype version of the
ScreenClust software package (Rotor-Gene ScreenClust HRM Soft-
ware, QIAGEN, Hilden, Germany). Three HRM data sets were used
to investigate the new algorithms. All of them were generated on
a Rotor-Gene Q 5plex HRM instrument (QIAGEN, Hilden, Germany)
using 25 pL reaction volumes. These included: (A) 32 known repli-
cates for alleles of the human factor V Leiden (G1691A) polymor-
phism and a SYBR Green based master mix, 300 nM each primer
and 25 ng template DNA. (B) Five replicates of each allele of a syn-
thetic and challenging Class IV (A to T) SNP template, run with Eva-
Green fluorescent intercalating dye (Biotium, Hayward, USA),
300 nM each primer and 20 ng template. (C) Three replicates of
each of five allele ratios of the factor V Leiden (G1691A) polymor-
phism (percentage mutation to wild type; 2.5%, 5%, 10%, and 50%)
along with the wild type and mutation controls, run with 1x SYTO-
9 fluorescent green intercalating dye (Invitrogen, Carlsbad, USA),
300 nM each primer and 25 ng template.

2.2. Analysis workflow
The workflow of the analysis procedure with all processing

steps is depicted in Fig. 1. The following sections detail the steps
performed.
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2.3. Normalization

Any HRM analysis requires the normalization of the start and
end fluorescence, as differences in raw fluorescence can be induced
by various factors in the PCR and HRM process, e.g., different
amounts of total DNA present for amplicons and template. In this
study, HRM curves were normalized using two different methods
in order to determine which method provides the best representa-
tion of known genotypes particularly for unsupervised cluster
analysis.

The first method applies curve scaling to a line of best fit such
that the highest fluorescence value was equal to 100 and the low-
est to zero. A region prior to and following melt curve transition is
selected to calculate average fluorescence and slope of the curve
and applied in the normalization.

The second method fits an idealized model of a double-stranded
melt curve using Levenberg-Marquardt least-squares estimation
of non-linear parameters [3]. The idealized model was adapted
from the ideal melt curve described by Azbel [4] amended by
parameters describing background noise and fluorescence changes
due to temperature, which are typically observed in HRM melt
curves (see Supplemental material for details of the fitting
functions).

Both methods of normalization were compared using two HRM
data sets containing various types of alleles of differing fragment
length and complexity of sequence.

2.4. Data processing and principal component analysis

To accentuate differences between individual samples, normal-
ized melt curves are first differentiated in ScreenClust. Following
this, a residual plot is generated by subtracting all the differenti-
ated curves by the composite median of all curves (see Fig. 1).
The residual plot is used as the data basis for a form of principal
component analysis to extract a set of features for each curve. Prin-
cipal component analysis selects the linear combination of the data
vector that shows the most variation among the samples as the
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Fig. 1. Processing and analysis workflow in the ScreenClust software (see text for details).
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first principal component (PC) [5]. Subsequent PCs account for as
much of the remaining variability as possible. For most HRM data
sets only up to the first three PCs are required in our experience as
most of the remaining variance in the other PCs will be attributed
to uninteresting variation or noise (data not shown). The selection
of the appropriate number of PCs to use is described below.

2.5. Supervised discriminant analysis of data with known controls

Classification of unknown samples into known groups using
known samples as controls was achieved using linear discriminant
analysis (LDA). LDA arises as the optimal classifier when the data
have a multivariate normal distribution, and each class has the
same covariance matrix but differing means [6]. Using the control
samples, LDA calculates a cluster distribution. The center of the
cluster is set as the mean of the controls.

Unknown samples are allocated to a cluster based on their
proximity to the mean points of the controls (see Supplemental
material for more mathematical details). When the number of con-
trols in each group is =2, then LDA can be applied formally. How-
ever, it would be desirable to have more known samples than this
(i.e., >4 controls per group).

If only one control is provided per cluster, a nearest neighbor
calculation is used by allocating the samples to a cluster based
on their proximity to the control.

The choice of PC dimensionality using a supervised data set is
achieved using a cross-validation to find the number of PCs that
produces the lowest number of misclassifications. Cross-validation
involves leaving a known sample, and using the remainder to build
a classifier. The left out observation is then classified and any error
counted. This process is repeated for two and three PCs and the
dimensionality with the lowest error rate chosen.

2.6. Unsupervised cluster analysis without known controls

The aim of unsupervised cluster analysis is to find de novo data
groups without a priori knowledge on the number and kind of
genotypes present in the data set. To achieve such a hypothesis
free analysis we selected the method of k-means cluster analysis.
k-Means undergoes an iterative process where clusters are gener-
ated by choosing k random cluster centers and allocating samples
to clusters. The ideal cluster configuration for k clusters is the one
where the within cluster sum of squares is minimized [7].

Alone, k-means is unable to determine the number of clusters;
rather it defines clusters based on a given number of clusters. To
determine a choice of the number of clusters we combine k-means
with the Gap statistic [8]. The idea is to look at a measure of cluster
quality and compare it to that of a simulated data set known to not
have any real clusters (see Supplemental material for more details
on the implementation of k-means and the gap statistics in
ScreenClust).

2.7. Posterior class probabilities and typicalities

Posterior class probabilities are the probabilities that each sam-
ple is a member of each group assuming that the sample is a mem-
ber of one of the groups. An unknown sample would be allocated to
the group with the largest posterior class probability.

Posterior class probabilities tell us which group a sample is
most likely a member of, given that it is a member of at least
one of them.

An additional typicality index tells us how consistent a sample
is within its own group, i.e., the typicality measures how well a
sample fits into its assigned cluster (for details of the calculation
of posterior probabilities and typicalities see Supplemental
material).

2.8. ScreenClust software

Raw HRM data from the Rotor-Gene operating software are im-
ported into ScreenClust software directly using the .rex file format,
with syntactic analysis (parsing) to ensure the correct data is ana-
lyzed. The overall analysis procedure is guided by a software wiz-
ard and default values allowing, if desired, the standardized
generation of a genotyping result with only one operator selection
for “supervised” or “unsupervised” mode. All no template controls
(NTC) and unnamed samples are automatically removed from the
analysis as the lack of melt curve features affects the normaliza-
tion. Following sample selection, the user can select between ana-
lyzing supervised or unsupervised data sets.

Choosing “supervised” allows the appropriate controls for each
genotype to be selected. If more than two controls were used for
each group, LDA is used and the appropriate number of PC deter-
mined via the cross-validation function. Having only one control
would activate the nearest neighbor classification of samples into
groups.

Selecting “unsupervised” enables the k-means clustering and
Gap statistic algorithms, with the software selecting the most
appropriate cluster number and PC number to use.

The clusters are graphically plotted using the loading scores of
each PC for all samples (e.g., PC1 vs. PC2) for both supervised
and unsupervised methods. An ellipsoid representing cluster
covariances following classification is also drawn. Unknown sam-
ples are classified into each cluster group with posterior probabil-
ities and typicalities being calculated for all samples.

3. Results
3.1. Evaluation of normalization methods

Using the normalization process of fluorescence scaling to a line
of best fit we observed that the data retained most of the curve fea-
tures post normalization whereas the idealized Levenberg-Marqu-
ardt fitting algorithm resulted in the characteristic heteroduplex
curve double inflection to disappear (see Supplemental material).
The clustering and calling of unknown samples and clusters was
nevertheless effective for most data sets and both normalization
methods. However, for one of our data sets containing difficult to
resolve allelic ratios, down to as low as 2.5%, of the factor V Leiden
polymorphism, loss of curve features following normalization
using the idealized model algorithm did result in incorrect cluster-
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Fig. 2A. Normalized HRM curves of four allelic ratios of the factor V Leiden
(G1691A) polymorphism (from 5% to 100%) as well as wild type and heterozygous
samples using the fluorescence scaling to a line of best fit normalization. The curves
have minimal curve shape topography, especially for allelic ratios of less then 10%.



V. Reja et al./Methods 50 (2010) S10-S14 s13

ing and calling of pseudo-unknowns using unsupervised analysis
(data not shown). Using the fluorescence scaling to a line of best
fit model for this data set, all clusters and samples were called cor-
rectly with high posterior probabilities and typicalities in unsuper-
vised mode (Fig. 2A, B).

3.2. Class IV SNP genotyping

ScreenClust was capable of clustering all three genotypes of the
synthetic Class IV SNP (A to T) polymorphism data set calling all
pseudo-unknowns correctly into their respective genotypes using
the unsupervised analysis feature (Fig. 3A). When the supervised
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Fig. 2B. Unsupervised ScreenClust analysis of the factor V Leiden (G16191A)
mutation at various allelic ratios. Using the fluorescence scaling to a line of best
fit normalization resulted in all allelic ratios being detected.
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Fig. 3A. Unsupervised ScreenClust analysis of a class IV (A to T) SNP. All pseudo-
unknowns for the AA (red), TT (blue) and AT (green) were correctly clustered and
called into the respective genotypes. Clusters are highlighted by ellipsoids that
represent the covariance of the classified samples in a two PC dimension plot.
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Fig. 3B. Standard HRM subtraction plot of the class IV SNP provided by the Rotor-
Gene Q version 1.7 software with the first AA sample selected as the control. A
number of the TT allele samples (blue) could not be differentiated from the AA
genotype (red). Only the heterozygote AT allele samples were all called correctly.

analysis feature was applied and the first three samples of each
genotype selected as controls, the software again was capable of
correctly calling all the pseudo-unknowns (see auto-calling results
table in the Supplemental material). We compared the ScreenClust
supervised result for the Class IV SNP data set to a result obtained
using the HRM analysis module of the Rotor-Gene operating soft-
ware (version 1.7.9.4). The first sample of each genotype was se-
lected as the control and the percentage confidence limit was set
to 70%. Three out of 12 samples could not be correctly called using
the HRM module within the Rotor-Gene operating software when a
70% confidence percentage was applied (see Fig. 3B and the com-
parison table of autocalling results in the Supplemental material).

4. Discussion

4.1. ScreenClust software was capable of detecting, clustering and
correctly calling genotypes from various HRM data sets

Comparisons between two different normalization techniques
demonstrated that the scaling of fluorescence using a line of best
fit was more appropriate than the idealized model melt curve algo-
rithm for HRM curves particularly for smaller variations in allele
composition (<5%). In applications such as the search for somatic
mutations, discrepancies in detecting smaller allelic ratios can be
problematic. Therefore, we implemented the methods of scaling
of fluorescence to a line of best fit normalization for all other
investigations.

Other known software packages for HRM analysis apply a “tem-
perature shift” to the knee at the end of the melt transition [9],
essentially normalizing the X-axis temperature data in addition
to the Y-axis fluorescence data. This type of data manipulation
eliminates much of the information content of the HRM curve,
with only the overall shape of the curve left intact. We have, there-
fore, intentionally avoided any type of temperature-shifting nor-
malization in order to provide the algorithms with the broadest
unbiased information available.

In summary, ScreenClust is capable of observing complex geno-
types with high sensitivity and specificity. We believe the ScreenC-
lust algorithms are outperforming the current generation of
software programs for HRM analysis with respect to the discrimi-
nating power for genotypes as well as the statistical interrogation
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and interpretation of the sample set. In this context, it should be
noted that the new algorithms offer a completely orthogonal ap-
proach for HRM analysis software for independent validation and
verification of HRM assays developed with the standard HRM anal-
ysis approach. Furthermore, it is the first software that allows for
the detection and statistical analysis of unsupervised HRM data
sets. This feature is highly advantageous to investigators attempt-
ing to discover new polymorphisms. However, the sensitive algo-
rithms may also easily find and cluster artifacts as individual
pseudo-genotypes such as deviations in the master mix composi-
tions (unpublished results). This, on one hand, allows monitoring
the quality of the HRM procedure with every run, but, on the other
hand, emphasizes the need also for highly standardized and reli-
able reaction conditions for the applied reagents and the melt ana-
lyzer for a successful HRM analysis.

The unsupervised mode is also the method of choice, if not for
all putative genotypes in the data set controls are available. The
partial set of controls is then employed as pseudo-unknowns in
unsupervised mode. These controls and the corresponding samples
of the same genotype will form a cluster whereas a new polymor-
phism will separate in another cluster.

Here we have shown first examples of the ScreenClust algo-
rithms for SNP genotyping, respectively, mutation discovery, but

we believe that the approach also offers interesting possibilities
for other HRM applications such as the detailed analysis of inser-
tions and deletions, pathogen detection but also methylation
analysis.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.ymeth.2010.02.006.
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