HW 1	Multinuclear NMR	Name:	
Points:	C6800	Date:	
Max. 100 points	Spring 2015	Version A	

1. (10 points) Show that $E_{\text{mag}} = -\boldsymbol{\mu} \cdot \boldsymbol{B}_0 = -\boldsymbol{\mu}_z |\boldsymbol{B}|$

2. (15 points) Find nuclear spins *I* of ⁶Li, ⁹Be, ⁵⁵Mn, and ²⁰¹Hg. For each nucleus list all possible values of $m_{\rm I}$ in the order of increasing stability of energy states.

3. (15 points) Calculate the energy difference between the spin levels inside a 950 MHz magnet for a 3 H nucleus.

4. (15 points) Calculate the excess of nuclei on the lowest energy level of 3 H at 300 K and 173 K.

5. (25 points) Octahedral complexe $Sn(2-PyCHCOCF_3)_2(O^tBu)_2$ may form several geometrical isomers. Find all of them, draw their geometrical formulas (ligand 2-PyCHCOCF₃ schematically), and give their symmetry point group label.

6. (10 points) How many signals would you expect in ¹⁹F NMR spectra for each isomer?

7. (10 points) How many signals of ^tBuO groups would you expect in 13 C NMR spectra for each isomer?