1 MultinukleMultinukleáárnrníí NMR spektroskopieNMR spektroskopie C6800C6800 MateriMateriáályly vv ISuISu ŘŘeeššenenéé úúlohy ze spektroskopie nuklelohy ze spektroskopie nukleáárnrníí magnetickmagnetickéé resonanceresonance http://http://nmrnmr..scisci..munimuni..czcz ÚÚlohylohy –– vyvyřřeeššit a odevzdatit a odevzdat Prezentace (na konci semestru) 10Prezentace (na konci semestru) 10--15 min na15 min na vybranvybranéé ttééma NMRma NMR ZZáávvěěrereččnnáá ppíísemnsemnáá zkouzkoušškaka 2 NMRNMR –– Historical PerspectiveHistorical Perspective 1922 Electron spin observed1922 Electron spin observed (Stern(Stern--GerlachGerlach)) 19261926 NNuclearuclear spinspin -- David Dennison (HDavid Dennison (H22)) 19381938 NMRNMR waswas firstfirst observedobserved in a molecularin a molecular beambeam 19391939 I. I.I. I. Rabi observes absorption of radioRabi observes absorption of radio frequency (RF) energy by nuclei of Hfrequency (RF) energy by nuclei of H22 gasgas IsidorIsidor II.. RabiRabi Nobel prize in physics in 1944Nobel prize in physics in 1944 "for his resonance method for"for his resonance method for recording the magneticrecording the magnetic properties of atomic nuclei"properties of atomic nuclei" ((18981898 –– 19881988)) 3 NMRNMR –– Historical PerspectiveHistorical Perspective 1945 Purcell, Torrey, Pound @ Harvard1945 Purcell, Torrey, Pound @ Harvard solidsolid paraffinparaffin 1945 Bloch, Hansen, Packard @ Stanford1945 Bloch, Hansen, Packard @ Stanford liquidliquid HH22OO Varian Bros. & RussellVarian Bros. & Russell klystron for radars (WWII)klystron for radars (WWII) 19481948 PakePake, van, van VleckVleck solid state NMRsolid state NMR 1950 W. G. Proctor, F. C. Yu @ Stanford1950 W. G. Proctor, F. C. Yu @ Stanford δδ -- chemical shift inchemical shift in 1414NHNH44 1414NONO33 1950 W. C. Dickinson @ MIT1950 W. C. Dickinson @ MIT δδ -- chemical shift inchemical shift in 1919FF 19521952 CCommercialommercial NMR instrumentsNMR instruments usedused atat DuPont, Shell, Humble OilDuPont, Shell, Humble Oil 4 NMRNMR –– Historical PerspectiveHistorical Perspective Edward M. Purcell (Edward M. Purcell (19121912--1997)1997) & Felix Bloch (1905& Felix Bloch (1905--1983)1983) NP in physics 1952NP in physics 1952 "for their development of new methods for nuclear"for their development of new methods for nuclear magnetic precision measurements and discoveries inmagnetic precision measurements and discoveries in connection therewith"connection therewith" 5 NMRNMR –– Historical PerspectiveHistorical Perspective 1952 Hahn, Maxwell @ Berkeley - J scalar coupling 1953 Gutowsky, McCall, Slichter @ U. of IL - J 1955 Bloom, Shoolery spin decoupling 1960 Shoolery integration 1966 Ernst, Anderson FT NMR at Varian 1968 Waugh @ MIT HR, multipulse NMR in solids 6 NMRNMR –– Historical PerspectiveHistorical Perspective 1971 Jeener 2D NMR 1971 Damadian different NMR relaxation times of tissues and tumors 1972 CP, HP decoupling 1972 The first routine 13C NMR spectrometer ((beforebefore mainlymainly 1H, 19F, and 31P NMR) 1973 Lauterbur MRI 7 MRIMRI--Magnetic ResonanceMagnetic Resonance ImagingImaging Paul C.Paul C. LauterburLauterbur (1929(1929--)) Sir Peter MansfieldSir Peter Mansfield (1933(1933--)) NP in physiology and medicine 2003 8 NMRNMR –– Historical PerspectiveHistorical Perspective 1974/19791974/1979 R. R. ErnstR. R. Ernst 2D COSY2D COSY, NOESY, NOESY 19771977 MASMAS 19811981 BaxBax, Freeman, Freeman INADEQUATEINADEQUATE 19821982 APTAPT 1983 Freeman1983 Freeman BB decoupling, MLEV, WALTZBB decoupling, MLEV, WALTZ 1990 3D and1990 3D and 11H/H/1515N/N/1313C Triple resonanceC Triple resonance 19911991 R. R.R. R. ErnstErnst NP in chemistryNP in chemistry 20012001 TheThe firstfirst commercialcommercial 900 MHz instrument900 MHz instrument 20022002 K.K. WWüüthrichthrich NP in chemistryNP in chemistry 9 NMRNMR –– Historical PerspectiveHistorical Perspective RichradRichrad R. ErnstR. Ernst (1933(1933--)) NP in chemistry 1991NP in chemistry 1991 "for his contributions to the"for his contributions to the development of the methodology ofdevelopment of the methodology of high resolution nuclear magnetichigh resolution nuclear magnetic resonance (NMR) spectroscopy"resonance (NMR) spectroscopy" KurtKurt WWüüthrichthrich (1938(1938--)) NP in chemistry 2002NP in chemistry 2002 "for his development of nuclear magnetic"for his development of nuclear magnetic resonance spectroscopy for determining theresonance spectroscopy for determining the threethree--dimensional structure of biologicaldimensional structure of biological macromolecules in solution"macromolecules in solution" 10 NMRNMR –– Historical PerspectiveHistorical Perspective 11 Nuclear Magnetic ResonanceNuclear Magnetic Resonance High resolution liquid state NMRHigh resolution liquid state NMR spectroscopyspectroscopy Solid state NMR spectroscopySolid state NMR spectroscopy HighHigh--pressurepressure NMRNMR NMR inNMR in thethe gasgas phasephase NMR spectroscopy in liquid crystallineNMR spectroscopy in liquid crystalline mediamedia MagneticMagnetic resonanceresonance imagingimaging (MRI)(MRI) 12 HyperfineHyperfine InteractionsInteractions ••IInteractionnteractionss ofof nuclenucleii with the electric andwith the electric and magnetic fieldsmagnetic fields ••InteractionsInteractions betweenbetween aa nucleusnucleus andand electronselectrons ••TransferTransfer ofof chemicalchemical ((electronicelectronic)) informationinformation fromfrom bondsbonds andand lonelone pairpairss to ato a nucleusnucleus •• IndirectIndirect •• DirectDirect 13 HyperfineHyperfine InteractionsInteractions IndirectIndirect ••ElectricElectric fieldfield gradientgradient ((EFGEFG)) withwith nuclearnuclear electricelectric quadrupolequadrupole ••InducedInduced magneticmagnetic fieldfield withwith nuclearnuclear magneticmagnetic momentsmoments ((shieldingshielding)) DirectDirect ••ss--electronselectrons withinwithin nucleinuclei,, polarizationpolarization ofof bondingbonding spinsspins (J(J--couplingcoupling)) 14 DirectDirect InteractionsInteractions ONLY sONLY s--electronselectrons cancan interactinteract withwith nucleinuclei ONLY sONLY s--electronselectrons havehave nonnon--zerozero electronelectron densitydensity atat aa nucleusnucleus p, d - nodal planes 15 Relationship Between Wavelength,Relationship Between Wavelength, Frequency and EnergyFrequency and Energy Speed of light (Speed of light (cc) is the same for all wavelengths) is the same for all wavelengths cc == 2.99792.9979 101088 m sm s−−11 Frequency (Frequency (νν), the number of wavelengths per second, is), the number of wavelengths per second, is inversely proportional to wavelength:inversely proportional to wavelength: νν == cc/λ/λ Energy of a photon is directly proportional to frequencyEnergy of a photon is directly proportional to frequency and inversely proportional to wavelength:and inversely proportional to wavelength: EE == hhνν == hhcc//λλ h = Plankh = Plank’’s constants constant == 66..626176626176 1010−−3434 J sJ s 16 ElectromagneticElectromagnetic RadiationRadiation NMR 17 Method Energy ScaleMethod Energy Scale 18 Energy Scale Conversion FactorsEnergy Scale Conversion Factors 111.036 101.036 10−−552.506 102.506 1099 J molJ mol−−11 9.649 109.649 1044112.418 102.418 101414 eVeV 3.990 103.990 10−−10104.136 104.136 10−−151511HzHz J molJ mol−−11eVeVHzHz 19 IIssotopotopeses IIssotopotopeses = a set of= a set of nunucclidlideses of an elementof an element,, samesame Z,Z, differentdifferent AA there is aboutthere is about 2600 nu2600 nucclidlideses ((stabilstabilee andand radioaradioacctivtivee)) 340 nu340 nucclidlideses found in naturefound in nature 272700 stabstabiillee aandnd 7070 radioaradioacctivtivee MonoiMonoissotopicotopic elementselements:: 99Be,Be, 1919F,F, 2323Na,Na, 2727Al,Al, 3131P,P, 5959Co,Co, 127127I,I, 197197AuAu PolyiPolyissotopicotopic elementselements:: 11H,H, 22H (D),H (D), 33H (T)H (T) 1010B,B, 1111BB SnSn has the highest number ofhas the highest number of stabilstabilee iissotopotopeses –– 1010 112, 114, 115, 116, 117, 118, 119, 120, 122, 124112, 114, 115, 116, 117, 118, 119, 120, 122, 124SnSn 20 NaturalNatural AAbundancebundance,, %% 00 00 3/23/2 00 1/21/2 00 00 II 6.8506.850204204 29.8029.80202202 13.2213.22201201 23.1323.13200200 16.8416.84199199 10.0210.02198198 0.1460.146196196 NANA%%AAHgHg Mass number, A Isotopic Compositions of the ElementsIsotopic Compositions of the Elements 21 NaturalNatural AAbundancebundance,, %% 11HH 99.98599.985 22HH 0.0150.015 1212CC 98.8998.89 1313CC 1.111.11 1414NN 99.6399.63 1515NN 0.370.37 1616OO 99.75999.759 1177OO 0.0370.037 1818OO 0.2040.204 3232SS 95.0095.00 3333SS 0.760.76 3434SS 4.224.22 3636SS 0.0140.014 Isotopic Compositions of the ElementsIsotopic Compositions of the Elements 22 Variability inVariability in Isotopic CompositionsIsotopic Compositions IsotopeIsotope RangeRange AverageAverage 1010BB 18.92718.927 -- 20.33720.337 19.9 (7)19.9 (7) 1111BB 81.07381.073 -- 79.66379.663 80.1 (7)80.1 (7) 1616OO 99.738499.7384 -- 99.775699.7756 99.757 (16)99.757 (16) 1717OO 0.03990.0399 -- 0.03670.0367 0.038 (1)0.038 (1) 1818OO 0.22170.2217 -- 0.18770.1877 0.205 (14)0.205 (14) Natural Abundance, % 23 NuclearNuclear SSpinpin electron spinelectron spin ss == ½½ proton and neutron Iproton and neutron I == ½½ nuclear spinnuclear spin II = z= z ½½ z = integer 0, 1, 2, 3, .....z = integer 0, 1, 2, 3, ..... multiples ofmultiples of ½½ integerinteger 00 II evenevenoddodd oddoddeveneven oddoddoddodd eveneveneveneven Number of neutronsNumber of neutrons,, NNNumber of protonsNumber of protons,, ZZ 24 NuclearNuclear SSpinpin protons and neutrons are Fermions, obey Pauli exclusion principlprotons and neutrons are Fermions, obey Pauli exclusion principlee 1212 CC 1313 CC nn nnpp pp II == ½½II = 0= 0 25 NuclearNuclear SSpinpin eveneven –– eveneven:: II = 0= 0 44He,He, 1212C,C, 1616O,O, 2020Ne,Ne, 2424Mg,Mg, 2828Si,Si, 3232S,S, 3636Ar,Ar, 4040CaCa oddodd –– oddodd:: II = integer= integer ONLYONLY 22HH,, 66Li,Li, 1010B,B, 1414N,N, 4040K,K, 5050V,V, 138138La,La, 176176LuLu eveneven –– odd and oddodd and odd –– eveneven:: II = multiples of= multiples of ½½ 1133CC ½½,, 1177OO 5/2,5/2, 3333SS 3/23/2 26 NuclearNuclear SSpinpin 5050evenevenoddodd 5757oddoddeveneven 88 168168 Number of nuclidesNumber of nuclides oddoddoddodd eveneveneveneven Number of neutronsNumber of neutrons NN Number of protonsNumber of protons ZZ 27 28 NuclearNuclear SSpinpin 29 NuclearNuclear SSpinpin NO stable nucleus hasNO stable nucleus has spin 2spin 2 the highest value of spin for a stable nucleus is 7the highest value of spin for a stable nucleus is 7 171766 LuLu uunstablenstable nucleinuclei highest integralhighest integral spin 16spin 16 -- isomerisomer 178178 HfHf highest halfhighest half--integerinteger 37/237/2 -- isomerisomer 177177 Hf)Hf) 30 NuclearNuclear SSpinpin • Nuclei with spin ½ - a spherical charge distribution • Nuclei with I > ½ - nonspherical charge distributions (prolate or oblate) • All nuclei with non-zero spins – magnetic moments (μ) • Nonspherical nuclei - an electric quadrupole moment (eQ) 31 NuclearNuclear SSpinpin 32 NuclearNuclear SSpinpin 33 NuclearNuclear SSpinpin Nuclear spin =Nuclear spin = SpinSpin angularangular momentummomentum,, PP (vector)(vector) Spin quantum numberSpin quantum number II Magnetic quantum numberMagnetic quantum number mmII Magnitude ofMagnitude of PP is quantized:is quantized: Direction with respect to the magneticDirection with respect to the magnetic fieldfield BB00 is quantized:is quantized: PP µµ ( )1 2 += II h P π Iz m h P π2 = 34 SpinSpin AngularAngular MomentumMomentum,, PP 5959CoCo,, II = 7/2= 7/2 mmII II == NuclearNuclear spin quantum numberspin quantum number II = 0,= 0, ½½, 1, 3/2, 5/2,, 1, 3/2, 5/2, 3,3, 7/27/2,,.......... mmII == Nuclear spinNuclear spin magnetic quantummagnetic quantum numbernumber Multiplicity,Multiplicity, MM 22II + 1+ 1 valuesvalues mmII = I, I= I, I--1, I1, I--2, ...,2, ..., --I+2,I+2, --I+1,I+1, --II -1/2 -3/2 -5/2 3/2 -7/2 1/2 5/2 7/2 BB00( )1 2 += II h P π Iz m h P π2 = ( )1 cos + == II m P P Iz θ 35 SpinSpin AngularAngular MomentumMomentum,, PP 1.9361.9363/23/2 2.9582.9585/25/2 3.4643.46433 3.9693.9697/27/2 4.4724.47244 4.9754.9759/29/2 1.4141.41411 0.8660.866½½ [[II ((II + 1)]+ 1)]½½II ( )1 2 += II h P π 36 Spin Magnetic Moment, µ The electrons, nucleons (protonThe electrons, nucleons (protonss, neutron, neutronss) and some) and some nuclei possess intrinsic magnetism, which is not due to anuclei possess intrinsic magnetism, which is not due to a circulating current.circulating current. PPermanent magneticermanent magnetic moment similarly as spin angularmoment similarly as spin angular momentum.momentum. Magnetic moment,Magnetic moment, µµ, is directly proportional to the spin, is directly proportional to the spin angular momentangular momentumum,, PP :: µµ == γγ PP γγ is theis the gyromagneticgyromagnetic ((magnetogyricmagnetogyric) ratio) ratio 37 MagnetogyricMagnetogyric RatioRatio γγ -- thethe magnetogyricmagnetogyric ratioratio isis thethe ratioratio ofof thethe nuclearnuclear magneticmagnetic momentmoment µµ toto thethe nuclearnuclear angularangular momentummomentum P.P. µµ == γγ PP γγ -- Important characteristic of nucleiImportant characteristic of nuclei [rad[rad TT--11 ss--11]] 38 Spin Magnetic Moment, µ µµ == γγ PP == γγ (h/2(h/2π)π) [[II ((II + 1)]+ 1)]½½ µµzz == γγ PPzz == γγ (h/2(h/2π)π) mmII NucleusNucleus 11HH 22HH 1313CC 1515NN 1919FF 2929SiSi 3131PP γγ [10[10--77 radrad TT--11ss--11]] 26.7526.75 4.114.11 6.736.73 --2.712.71 25.1825.18 −−5.325.32 10.8410.84 electronelectron γγee == 17 609 1017 609 1077 = 658= 658 γγ((HH)) 39 Nuclear Spin in Magnetic Field 40 Nuclear Spin in Magnetic Field ΔE = λ absorbed light Applied Magnetic Field Hext ΔE = λ absorbed light Applied Magnetic Field Hext RandomRandom orientationorientation No Field Magnetic Field AlignmentAlignment 41 Nuclear Spin in Magnetic Field 42 Nuclear Spin in Magnetic Field • An angular momentum is associated with each rotating object • A nuclear spin possesses a magnetic moment arising from the angular momentum of the nucleus • The magnetic moment is a vector perpendicular to the current loop • In a magnetic field (B) the magnetic moment behaves as a magnetic dipole μ = i A 43 Nuclear Spin in Magnetic Field In B0, a magnetic moment is directed at some angle w.rt. B0 direction the B0 field will exert a torque on the magnetic moment. This causes it to precess about the magnetic field direction Torque is the rate of change of the nuclear spin angular momentum 44 Nuclear Spin in Magnetic Field Spin precession in the external magnetic field.Spin precession in the external magnetic field. Quantum description of precession shows that theQuantum description of precession shows that the frequency of the motion is:frequency of the motion is: ωω00 == −− γγ BB00 [[radrad ss−−11 ] or] or νν00 == −− γγ BB00/ 2/ 2ππ [Hz][Hz] It is called theIt is called the LarmorLarmor frequency (iffrequency (if γγ > 0 then> 0 then νν00 < 0)< 0) 45 LarmorLarmor FFrequencyrequency ωω00 == −− γγ BB00 [[radrad ss--11 ]] νν00 == −− γγ BB00/ 2/ 2ππ [Hz][Hz] π γ ν 2 0 0 B −= 46 LarmorLarmor FFrequencyrequency Sir JosephSir Joseph LarmorLarmor (1857(1857--1942)1942) ωω00 == −− γγ BB00 [[radrad ss−−11 ] or] or νν00 == −− γγ BB00/ 2/ 2ππ [Hz][Hz] Ensemble of spins Nuclei are charged andNuclei are charged and if they have spin, theyif they have spin, they are magneticare magnetic No FieldNo Field AppliedApplied MagneticMagnetic Field =Field = BB00 Energy of transition =Energy of transition = energy ofenergy of radiowavesradiowaves Higher energy state: magneticHigher energy state: magnetic field opposes applied fieldfield opposes applied field Lower energy state: magneticLower energy state: magnetic field aligned with applied fieldfield aligned with applied field NuclearNuclear ZeemanZeeman EffectEffect -- SplittingSplitting mI -½ mI +½ 48 Nuclear Spin in Magnetic Field EEmagmag == −− µµ ⋅⋅ BB00 (scalar product)(scalar product) EEmagmag == −− µµzz BB == −− γγ PPzz BB EEmagmag == −− mmII ħħ γγ BB The magnetic energy depends on the interaction between theThe magnetic energy depends on the interaction between the magnetic moment and Bmagnetic moment and B00 field:field: NMR selection ruleNMR selection rule ∆∆mmII == ±± 11 49 50 Spin in Magnetic Field ∆∆ EEmagmag == EEm=m=--1/21/2 −− EEm=1/2m=1/2 == ∆∆mmII ħħ γγ BB = h= h νν ⇒⇒ νν == γγ BB/2/2ππ II == ½½ EEm=1/2m=1/2 EEm=m=--1/21/2 The frequency of the electromagnetic radiation thatThe frequency of the electromagnetic radiation that corresponds to the energy difference between the twocorresponds to the energy difference between the two energy levels is equal to theenergy levels is equal to the precessionalprecessional frequency offrequency of the nuclei.the nuclei. 51 Amplitude Frequency (Hz) Excitation of NMR SpinExcitation of NMR Spin ΔE α β ΔE α βIrradiate with Frequency so as to satisfy Planck's Law ΔE=hυ Energy 52 53 EnergyEnergy LLevelsevels forfor II == ½½ ∆∆E = (E = (66..626626 1010−−3434 J sJ s 26.75 1026.75 1077 rad Trad T--11ss--11 11.7411.7433 TT))/2/2ππ = 3.313= 3.313 1010−−2525 JJ very small energy differencevery small energy difference ∆∆ EEmagmag == EEm=m=--1/21/2 −− EEm=1/2m=1/2 == ∆∆mmII ħħ γγ BB = h= h γγ BB/2/2ππ 54 EnergyEnergy LLevelsevels forfor II == ½½ α β α β 55 Boltzmann Distribution TheThe excessexcess ofof nucleinuclei onon thethe lowerlower energyenergy levellevel isis givengiven byby BoltzmanBoltzmannn distributiondistribution:: NN↑↓↑↓//NN↑↑↑↑ = exp(= exp(−−∆∆EE//kkBBTT) = exp() = exp(−−ħħ γγ BB //kkBBTT)) = exp(= exp(−−3.33.31313 1010--2525/ 4.1/ 4.10101 1010--2121)) == exp(exp(−−8.078 108.078 10--55) =) = 0.999919220.99991922 IfIf NN↑↑↑↑ = 1 000= 1 000 000000 thenthen NN↑↓↑↓ == 999919999919 OnlyOnly 8811 outout ofof millionmillion 11HH nucleinuclei contributecontribute to NMRto NMR signalsignal atat 500 MHz!500 MHz! ħħ = 1.055 10= 1.055 10--3434 J sJ s γγHH = 26.75 10= 26.75 1077 rad Trad T--11ss--11 B = 11.7433 T (500 MHz)B = 11.7433 T (500 MHz) kkBB = 1.38= 1.380707 1010--2323 J KJ K--11 T = 297 KT = 297 K 56 Boltzmann Distribution NN↑↓↑↓//NN↑↑↑↑ = exp(= exp(−−∆∆EE//kkBBTT) = exp() = exp(−−ħħ γγ BB //kkBBTT)) the stronger the field andthe stronger the field and the higher thethe higher the magnetogyricmagnetogyric ratio, theratio, the larger the populationlarger the population differencedifference the higher thethe higher the temperature, the smallertemperature, the smaller the population differencethe population difference 57 Boltzmann Distribution The higher the field,The higher the field, the larger the energy difference,the larger the energy difference, the larger the population difference,the larger the population difference, the larger the net magnetization,the larger the net magnetization, and the bigger the NMR signaland the bigger the NMR signal 58 Nuclear Magnetic ResonanceNuclear Magnetic Resonance (NMR)(NMR) NuclearNuclear –– spinspin ½½ nuclei (e.g. protons) behave asnuclei (e.g. protons) behave as tiny bar magnets.tiny bar magnets. MagneticMagnetic –– a strong magnetic field causes a smalla strong magnetic field causes a small energy difference between +energy difference between + ½½ andand –– ½½ spin states.spin states. ResonanceResonance –– photons of radio waves can match thephotons of radio waves can match the exact energy difference between the +exact energy difference between the + ½½ andand –– ½½ spin states resulting in absorption of photons asspin states resulting in absorption of photons as the protons change spin states.the protons change spin states. 59 MagnetizationMagnetization More nuclei point in parallel to theMore nuclei point in parallel to the static magnetic field.static magnetic field. The macroscopic magneticThe macroscopic magnetic moment,moment, MM00 MM00 == ΣΣ μμii In-Field 60 LongitudinalLongitudinal MMagnetizationagnetization 61 SpinSpin--LLatticeattice RRelaxationelaxation TTimeime RR11 = 1/= 1/TT11 [Hz] longitudinal relaxation rate constant[Hz] longitudinal relaxation rate constant TT11 [s] longitudinal relaxation time[s] longitudinal relaxation time spinspin--lattice relaxation timelattice relaxation time enthalpyenthalpy 62 TTransverseransverse MagnetisationMagnetisation 63 SpinSpin--SSpinpin RRelaxationelaxation TTimeime RR22 = 1/= 1/TT22 [Hz] transverse relaxation rate constant[Hz] transverse relaxation rate constant TT22 [s] transverse relaxation time constant[s] transverse relaxation time constant spinspin--spin relaxation timespin relaxation time entropyentropy 64 65 66 RelaxationRelaxation 67 68 FreeFree InductionInduction DecayDecay FIDFID 69 70 71