

Research centre for toxic compounds in the environment

Chemical Analysis in Environmental Chemistry

Petra Booij booij@recetox.muni.cz

- Semi-volatile organic compounds from sources to the environment
 - Part 1: Chlorinated and brominated compounds
 - Part 2: Emerging compounds, endocrine disrupting compounds
- Analytical chemistry
 - Monitoring and sampling strategies I

This lecture

- Analytical chemistry and environmental pollution
- Steps in quantification of contaminants
- Sample preparation and clean-up
- Chromatography
- Detection
- Data processing
- Examples
- Case study

Analytical Chemistry

Quantitation

How much of substance X is in the sample?

Detection

Does the sample contain substance X?

Identification

What is the identity of the substance X in the sample?

Separation

How can the compounds of interest be separated from the sample matrix for better quantitation and identification?

Environmental Pollution - Sources

Environmental Pollution - Effects

Chemical Analysis of Environmental Samples

compounds e.g.,

Pharmaceuticals

Personal care products

Drugs

Biocides

Polycyclic Aromatic Compounds

Phthalates

Antioxidants

Halogenated compounds

Dioxines

Steps in a Quantitative Analysis

Selecting a Method

- What is the problem?
- What is already known?
- Choosing a Method
- Testing Procedure
 - Standard Sample
 - Comparing methods
 - Standard addition to the sample

Sampling and Preparation

- Sampling uncertainties
- Representative
- Homogene
- Crushing, grinding, sieving, mixing
- Replicates
- Quanitative or Qualitative analysis

Eliminating Interferences – Sample Clean-up

- Solubility
- Partition coefficient
- Liquid/Liquid Extraction
- Solid Phase Extraction (SPE)
- Soxhlet Extraction
- Accelerated Solvent Extraction (ASE)
- Gel Permeation Chromatography (GPC)
- Evaporation
- Filtration

1906 - Tswett - Adsorption Chromatography

Solid Phase Extraction (SPE)

3. LOAD SAMPLE

Soxhlet Extraction

Accelerated Solvent Extraction (ASE)

Gel Permeation Chromatography (GPC)

porous packing

Adsorption Chromatography

http://www.hitachi-hitec.com/global/science/lc/lc_basic_4.html

Partition Chromatography

http://www.hitachi-hitec.com/global/science/lc/lc_basic_4.html

Ion Exchange Chromatography

http://www.hitachi-hitec.com/global/science/lc/lc_basic_4.html

High Performance Liquid Chromatography (HPLC)

Gas Chromatography (GC)

GC column

Research centre for toxic compounds in the environment

0

Solid-phase microextraction (SPME)

Detectors

Analytical signals: Emission of radiation Absorption of radiation Scattering radiation Reflection of radiation Electrical current Electrical resistance Mass-to-charge ratio

Often used in Environmental Chemistry: Fluorescence Detector UV-VIS detector

Mainly used in Environmental Chemistry: Mass Spectrometry

Fluorescence Detector

http://www.hitachi-hitec.com/global/science/lc/lc_basic_4.html

UV-VIS Detector

http://www.hitachi-hitec.com/global/science/lc/lc_basic_4.html

Mass Spectrometry (MS)

Chromatogram

Retention time (min)

Peak Integration

Retention time (min)

Peak	RT	Area	Height	
1	6.763	7496704442	779127844.4	
2	8.532	5292010045	535611910.5	
3	8.816	3649106823	394565640.2	

Calibration Curve - Quantification

Mass Spectrum - Qualification

- Instrument
- Method
- Personal

Accuracy, Precision and Trueness

Random and Systematic Errors

Measurement Errors

- Calibration
- Proper use of standards
- Proper use of internal labeled standards
- Blank material
- Reference material

Extraction tools for identification of chemical contaminants in estuarine and coastal waters to determine toxic pressure on primary producers

(Booij et al., Chemosphere 93 (2013) 107-114)

The use of mosses and pine needles to detect persistent organic pollutants at local and regional scales

Holoubek et al., Environmental Pollution 109 (2000), 283-292)

Method:

- 1. Drying
- 2. Mincing
- 3. Soxhlet
- 4. Evaporation
- 5. SPE
- 6. Evaporation
- 7. GC-MS

Compounds:

Polycyclic Aromatic Hydrocarbons (PAHs)

Research centre for toxic compounds in the environment

Background site

The comparison of observed PAHs levels in mosses and pine neeedles from Valašské Meziříčí^b

The comparison of observed PAHs levels in mosses and pine needles from Vřesová^c

Industrial site

Contamination of Antarctic snow by polycyclic aromatic hydrocarbons dominated by combustion sources in the polar region

(Kukučka et al., Environ. Chem. 7 (2010) 504–513)

PCDD, PCDF, PCB and PBDE concentrations in breast milk of mothers residing in selected areas of Slovakia (Chovancová et al, Chemosphere 83 (2011) 1383–1390)

Method:

- 1. Sufuric acid/silica
- 2. SPE
- 3. GC-MS

Compounds:

Dioxins, Polychlorinated biphenyl (PCBs), Polybrominated diphenyl ethers (PBDE) Conclusion: Daily intake of dioxins and PCBs substantially exceeded the tolerable daily intake recommended by WHO.

Estimated daily infant intakes of TEQ _F	_{PCDDs/Fs} , TEQ _{dl-PCBs} (pg/kg b.w.)) and PBDEs (ng/kg b.w.) ir	n four Slovak areas.
--	---	-----------------------------	----------------------

Compounds	Krompachy $n = 10$			Košice n	Košice <i>n</i> = 8		Šal'a <i>n</i> = 14		Nemecká n = 1	
	Mean	Median	Range	Mean	Median	Range	Mean	Median	Range	
PCDDs/Fs	43.1	40.5	8.6-101	53.3	33.2	12.2-198	22.1	18.7	7.5-42.0	45.7
dl-PCBs	46.5	27.3	7.2-107	34.7	32.7	13.8-61.7	29.2	17.4	6.8-69.5	30.2
PBDEs	2.2	2.5	0.74-3.3	3.0	1.6	1.1-7.1	1.9	1.9	0.69-3.6	1.9

Identification and determination of trinitrotoluenes and their degradation products using liquid chromatography–electrospray ionization mass spectrometry (J. Becanová et al. / International Journal of Mass Spectrometry ~ 291 (2010) 133–139)

Method:

1. LC-MS and LC-UV

Optimization of LC-MS: pH mobile phase Capillary voltage Fragmentor voltage Collision energy

Profiles of illicit drug use during annual key holiday and control periods in Australia: wastewater analysis in an urban, a semi-rural and a vacation area

Yin Lai et al., Addiction, 2012, 108, 556–565

Method: Waste water Filtration SPE Evaporation LC-MS/MS

Conclusion:

detecting changes in use of drugs

Case study

Determination of Clenbuterol in surface water

Workflow ? Compounds class Chemical properties Sampling Sample clean-up and extraction Chemical analysis

http://www.chemspider.com/Chemical-Structure.2681.html Mw 277 Log Octanol-Water Partition Coef (SRC): Log Kow (KOWWIN v1.67 estimate) = 2.00

Boiling Pt, Melting Pt, Vapor Pressure Estimations (MPBPWIN v1.42): Boiling Pt (deg C): 378.89 (Adapted Stein & Brown method) Melting Pt (deg C): 138.02 (Mean or Weighted MP) VP(mm Hg,25 deg C): 5.56E-008 (Modified Grain method) Subcooled liquid VP: 7.66E-007 mm Hg (25 deg C, Mod-Grain method)

Water Solubility Estimate from Log Kow (WSKOW v1.41): Water Solubility at 25 deg C (mg/L): 3320 log Kow used: 2.00 (estimated) no-melting pt equation used

Water Sol Estimate from Fragments: Wat Sol (v1.01 est) = 46916 mg/L

Sacher et al., Journal of Chromatography A, 938 (2001) 199–210

1 L water

LC-MS/MS

