Analytical chemistry  l‐sampling strategies Dr. Pernilla Carlsson; carlsson@recetox.muni.cz, room 209, RECETOX OutlineOutline S li t t i• Sampling strategies ‐general limitations ‐bioaccumulation and sampling strategybioaccumulation and sampling strategy • Your hypothesis and how to address it • ”Chemical tools”• Chemical tools ‐chirality: environmental processes and different  sourcessources ‐transport processes ‐fate of POPs • Case study discussions General issues A t d t f d t• Amount and type of data • Seasonal distribution • Instrumental limitations and  infrastructureinfrastructure • Legislation Sampling strategy ‐ biomagnificationbiomagnification Cover the whole food web! Biomagnification PFOS in the eastern CanadianPFOS in the eastern Canadian Arctic marine food web • Who eats who? • Benthic/pelagic couplings? AMAP 2009 Your hypothesis and how to address itYour hypothesis and how to address it • Clear research questions! • Data neededData needed • Financial and time frames Your hypothesis and how to address itYour hypothesis and how to address it • An example: Does fish from the Baltic Sea contain higherDoes fish from the Baltic Sea contain higher concentrations of PCB and dioxins compared to fish from the Atlantic ocean?”fish from the Atlantic ocean? Fish and POPsFish and POPs • Study design: • Fish –speciesFish species • Sampling: fishing or buying? • Transport • AnalysesAnalyses • Data interpretation • Literature comparison Chemical ”tools”Chemical tools • Relative distribution  • Degradation and metabolitesDegradation and metabolites • Chirality • Isotopes Relative distributionRelative distribution • PCBs: different mixtures had different ratio between congenersg • Low‐chlorinated PCBs: Easily undergo long‐ range transportrange transport. PCBsPCBs AMAP http://www.amap.no/ Relative distribution –technical PCB  mixtures Arochlor: USA Takasuga et al., 2006 PCB flux to the Arctic ΣPCB13 (pg/L) Altitude/ depth Carrizo, D.; Gustafsson, O. Distribution and Inventories of Polychlorinated Biphenyls in the Polar Mixed Layer of Seven Pan‐ Arctic Shelf Seas and the Interior Basins. ES&T 2011. Carrizo, D.; Gustafsson, O. Pan‐Arctic River Fluxes of Polychlorinated Biphenyls. ES&T 2011 PCB flux to the Arctic  Altitude/ depth  Tri‐PCB  Tetra‐PCB  Penta‐PCB  H PCB Hexa‐PCB  Hepta‐PCB  Octa‐PCB Carrizo, D.; Gustafsson, O. Distribution and Inventories of Polychlorinated Biphenyls in the Polar Mixed Layer of Seven Pan‐ Arctic Shelf Seas and the Interior Basins. ES&T 2011. Carrizo, D.; Gustafsson, O. Pan‐Arctic River Fluxes of Polychlorinated Biphenyls. ES&T 2011 Relative distributionRelative distribution • Long‐range transport: Will favour light, easy volatile compoundsp =>Changed ratio in Arctic compared to technical mixturetechnical mixture =>”Non‐changed ratio”: Local sources Degradation and metabolitesDegradation and metabolites d b li f• Hydroxy‐PCBs: Metabolism of PCBs to  facilitate excreation of the compounds • Oxychlordane: Common, stable metabolite  from trans‐/cis‐nonachlor and –chlordane/ • DDE: Stable metabolite from DDT. Affect egg‐ shell thickness among birdsshell thickness among birds Degradation of POPsg • Cytochrome P450 (commonly known as CYP)y ( y ) • A superfamily of proteins (enzymes) found in the entire p y p ( y ) kingdom of life • They can transform the structure of organic chemicals CY 1A1 ibl f id i f O• CYP1A1 responsible for oxidation of many POPs B ff ti h i l t t CYP k i• By affecting chemical structures, CYP may make a given  compound nontoxic. • Or drastically increase its toxicityOr, drastically increase its toxicity… CYP1A • Most important subfamily among the P450. • 2,3,7,8‐TCDD, benzo(a)pyrene and dioxin‐like PCBs  (non‐ and mono‐ortho‐PCBs) can induce the  transcription of CYP1A genes via the aryl  hydrocarbon (Ah) receptor. 2,3,7,8‐TCDD and PCB‐81.  www.chemspider.com IsotopesIsotopes Who eats who? Trophic positions: “place in the food web”Trophic positions:  place in the food web 15N/14N=δ15N  δ15N  Illustration: Eldbjørg Heimstad Transport processes ‐tracking sources Grannas et al. (2013),  Jantunen et al .(2008),   Kallenborn et al, (2012a), Noyes et al. (2009),  Wong et al. (2011) Chiralityy –tracing environmental processes and sources Chiral pesticides: a‐HCH, trans‐, cis‐, and oxychlordanep , , , y Cl Cl Cl H Cl Cl Cl Cl Cl Cl Cl H Enantiomer selective analyses α‐HCH: ‐, + +Oxychlordane (OC), ‐OC, +trans‐chlordane (TC), +cis‐chlordane (CC), ‐CC, ‐TC ance e Time (min) Relativeabunda Relativeabundance Time (min) Enantiomer fractions of chiral pesticides in plankton as a tool to  differentiate between water masses Chiral pesticides non‐racemic EFs: indicatenon racemic EFs: indicate biological transformation  processes Plankton non‐selective metabolism,  reflect EFs of pesticides in thereflect EFs of pesticides in the  water mass Peter Leopold ©  Carlsson et al, 2014 Sample area 2007 2008 2009 2010 2011 Dominating water mass Winter ice conditions ©Norwegian Polar Institute area water mass conditions Kongs- fjorden Hallanger et al., 2011a Hallanger et al., 2011b Carlsson et al., 2014 Carlsson et al., 2014 Atlantic None/partly covered Liefde- Hallanger et Carlsson et Atlantic/ March-JulyLiefde fjorden Hallanger et al., 2011b Carlsson et al., 2014 Atlantic/ Arctic March July Rijp- fjorden Carlsson et al., 2014 Carlsson et al., 2014 Polar surface/ Arctic Ice cover until July Pack ice Carlsson et al., 2014 Carlsson et al., 2014 Meltwater/ Atlantic Annual ice cover Median enantiomeric fractions in Calanus spp. RF 2011 2011 KF ICE RF ICE KF KF= Kongsfjorden  LF= Liefdefjorden ICE = Ice stations (also represented by  ag=Apherusa glacialis, gw=Gammarus RF= Rijpfjorden  ag Apherusa glacialis, gw Gammarus wilkitzkii in 2010). Carlsson et al, 2014 Chiral pesticides and water masses •Ice cover and α‐HCH (hindering of) volatilisation(hindering of) volatilisation •Chlordanes and 2011 Large deviations from racemic trans‐chlordane W d i i f h EF di ib i•Water masses and ice cover are important for the EF distribution. •Impact from benthic‐pelagic processes not completely understoodImpact from benthic pelagic processes not completely understood yet. Case studies of environmental pollution PCBs in a changing Arctic: Towards understanding their input, transfer and uptake into Arctic biota and humans under climate changeunder climate change • Eva Brorström‐Lundén • John Munthe, Hanna Andersson, Crispin Halsall, Roland Kallenborn, Pernilla Carlsson,  Henry Wöhrnschimmel,  Matthew MacLeod, Ian Cousins, Deguo Kong, Gerhard Lammel, Arja Rautio, Khaled Abass  Aim of PCB-case study: •Synthesize ArcRisk results using PCBs as model substances •Link sources and pathways to transfer processes and uptake in biota and assess human exposure and effectsin biota and assess human exposure and effects •Effect of future climate change on uptake processes Eva Brorstrøm-Lundén, Swedish Environmental Research Institute, IVL Describing the full sequence from emissions to exposure R i f h• Review of the current status • What will happen when the climate changes? PCB emissions and pathways to the Arctic • Sources, releases, • Air and water transport and deposition fluxes • Key intercompartmental transfer PCB occurrence in the ArcticPCB occurrence in the Arctic • Levels in abiotic matrices and biotic matrices (key biota) • Time-series of concentrations Human exposure of PCB Policy, directives WHY PCBs?  Banned, but still present in large quantities in the environment. Banned, but still present in large quantities in the environment.  Studied extensively in the Arctic for more than three decades.  W ll d t d h i l h i l ti i i th d Well-understood physical-chemical properties, emissions, pathways and environmental concentrations => PCBs are perfect to evaluate models and as a benchmark for assessment of how other substances are influenced by climate change. PCB emissions (tons/year) Global primary emissions of PCB-28 and PCB-153 to air (high-end estimate), • Primary emissions from constructions and waste dumps p y ( g ), according to Breivik et al. (2007). Primary emissions from constructions and waste dumps. • Secondary emissions of PCBs will become more important than primary sources. • Climate change will most likely increase these secondary emissions. Identification of the most important pathways of PCBs to the Arctic  Atmospheric long range transport is the major route for global of PCBs to the Arctic  Atmospheric long range transport is the major route for global distribution of PCBs to the Arctic.  Long-range transport via oceanic currents is also of high Long range transport via oceanic currents is also of high importance.  Climate change is likely to affect these pathways and thereforeg y p y the environmental fate of PCBs. Atmospheric concentrations of PCBs Long term monitoring of PCBs are carried out in Arctic and EuropeLong term monitoring of PCBs are carried out in Arctic and Europe AMAP and EMEP databases hosted by NILU EBASE (www ebas nilu no)AMAP- and EMEP databases hosted by NILU EBASE (www.ebas.nilu.no). Atmospheric concentrations of PCBs - Long term monitoringLong term monitoring Arctic inter-compartmental transfer of PCBs -Processes of importance for climate changep g  Precipitation: Important factor for PCB levels in snowpack surface  Climate change related effects: Changes in precipitation patterns and snow melt periods Arctic inter-compartmental transfer of PCBs -Processes of importance for climate changep g  Accumulation of PCBs in sea ice =>”chemical storage”  Ice melting: Release of PCBs to the water and the marine food web, especially during early spring.  Climate change will affect pathways and mobility of PCBs in Arctic sea ice Climate change will affect pathways and mobility of PCBs in Arctic sea ice. Arctic inter-compartmental transfer of PCBs -Processes of importance for climate changep g PCB-52 declines when the air temperatures increase above 0oCabove 0 C. The heavier PCB-153/-132 do not show this trend. Concentrations of PCB-52 and PCB-153/132 in the ice-rafted snowpack f h f S (C d ) d lof the Beaufort Sea (Canada) during late winter. What will happen when the climate changes?  Model results: relative increases in PCB concentrations in the Arctic atmosphere and ocean. Mainly due to the temperature effect on volatilisation.  The absolute concentrations by 2090 are forecasted to be several orders of magnitude below present levels in all scenarios.  Atmospheric PCB concentrations in the Arctic have shown a continuous decreasing trend over the past decades. f What will happen when the climate changes? Modeled relative change of PCB-153 and PCB-28 concentrations in the Arctic and European atmosphere.   PCB153 PCB28  Arctic AEurope    PCB-153 in the Arctic: relative increase of ~1.5. PCB-153 in Europe:relative increase of 2. PCB 28 l iti t li t h th ff t i ithi th tPCB-28: less sensitive to climate change, the effect is within the parameter uncertainties. Concentrations of PCBs in biota (food items) Median (ng/g lw). Samples from Nuuk, Greenland (2010). Bioavailability, food web transfer of PCBs Bioavailability Major climate change impact on bioavailability: distribution changes in matrices, changed partitioning of PCBs in water due to increased temperatures. Svalbard marine food web Food web transfer acts as a link between the abiotic environment and human exposureand human exposure Health effects: Human exposure of PCBs PCB-153 TREND DATA IN PLASMA LIPIDS (µg/kg), IN PREGNANT WOMEN LIVING IN DISKO BAY (GREENLAND), NUUK (GREENLAND), AND NUNAVIK (QUEBEC, CANADA) DURING YEARS 1992 – 2007 • In general, levels of PCB in humans populations have declined over the CANADA) DURING YEARS 1992 2007. populations have declined over the past 20-30 years. • Declining trends of PCB-153 are seen in all these regions in plasma lipids in Inuit women. Health effects -Human exposure of PCBs in a warmer ArcticHuman exposure of PCBs in a warmer Arctic  The impact of changes in contaminant concentrations in food will be small l ti t th i t f h i di t b h irelative to the impact of changes in dietary behaviour.  Consumption and type of fish and other seafood are the most important factors for contaminant exposure, also in the future.p , Summary and conclusions -PCBs in a changing Arctic  ArcRisk results provides an overall picture of PCBs in the Arctic.  Understanding of relationships between sources, transport, bioaccumulation, exposure d h lth i t f PCB i l ti t li t hand health impacts of PCBs in relation to climate change.  Long term monitoring of PCBs and other POPs in air, sea water and biota is important both for evaluation of time trends and for detection of responses to environmental hchange.  Models are useful tools to predict future concentrations of contaminants in environmental media and human exposure.  Future needs: High quality datasets with simultaneously sampled biotic and abiotic samples, which can be used to evaluate and improve model performance. Contaminants in farmed versus wild fish Salmon Lowering risk of cardiovascular diseases. Omega-3 fatty acids S l f i=>Salmon farming Farmed salmon (Hites et al 2004)Farmed salmon (Hites et al. 2004) Higher concentrations of POPs compared to wild salmon Cause: the feed used Oceans and Human Health Contaminants in farmed versus wild fish Risk assessment ¤ Only cancer considered as effect ¤ Positive outcome of fish eating not included¤ Positive outcome of fish eating not included ¤ PCB and dieldrin concentrations ok according to US Food and Drug Administration ¤ EPA guidlines: Combined concentrations of PCBs, toxaphenes andg , p dieldrin were cause for concern. ¤ =>Eating farmed salmon 0.5-2 meals/month ok.g Contaminants in farmed versus wild fish But… The combined effect of PCBs dieldrin and toxaphenes are not wellThe combined effect of PCBs, dieldrin and toxaphenes are not well known. Benefits of omega-3 fatty acids (reducing cardiovascular diseases) are larger compared to the backdraws of POPslarger compared to the backdraws of POPs Contaminants in farmed versus wild fish Salmon feed today (Norway) M t bili f d l POP d t fi h b d f dMore vegetabilic feed =>less POPs compared to fish-based feed. However, also less fatty acids… Norwegian farmed salmon in 2004:Norwegian farmed salmon in 2004: ΣPBDE: 2.5 ng/g ww in salmon, BDE-47 and -99: 1.9 ng/g ww. BDE-47 and -99 in (wild) mackerel and herring: 0.5-1.8 ng/g ww. PCB-153 BDE-47 Norwegian Scientific Committee for Food Safety www.vkm.no Study design of your projects •Laboratory/field experiment •Analytical methods•Analytical methods •Interpretation of data –limitations? •Time limitations?Time limitations? •Suggestions for larger scale project Summary ‐sampling strategies • Plan your work: clear hypothesis, limitations of data, seasonality, time  and financial frames Ch i l “ l ” bl i hi li l i di ib i• Chemical “tools”: stable isotopes, chirality, relative distribution • Important to link models with empirical data • Identify limitiations in literaturey ReferencesReferences AMAP, 2011. Snow, Water, Ice and Permafrost in the Arctic (SWIPA): Climate Change and the Cryosphere. in:  AMAP (Ed.), Oslo, Norway, p. xii +538. Becker, S., Halsall, C.J., Tych, W., Kallenborn, R., Schlabach, M., Manø, S., 2012. Changing sources and  environmental factors reduce the rates of decline of organochlorine pesticides in the Arctic atmosphere.  Atmospheric Chemistry and Physics 12, 4033‐ 4044. Borgå, K., Saloranta, T.M., Ruus, A., 2010. Simulating climate change‐induced alterations in bioaccumulation ofg , , , , , , g g organic contaminants in an arctic marine food web. Environ. Toxicol. Chem. 29, 1349‐1357. Gouin, T., Armitage, J.M., Cousins, I.T., Muir, D.C.G., Ng, C.A., Reid, L., Tao, S., 2013. Influence of global climate change on chemical fate and bioaccumulation: The role of multimedia models. Environ. Toxicol. Chem. 32, 20‐31. Grannas A M Bogdal C Hageman K J Halsall C Harner T Hung H Kallenborn R Klan P Klanova JGrannas, A.M., Bogdal, C., Hageman, K.J., Halsall, C., Harner, T., Hung, H., Kallenborn, R., Klan, P., Klanova, J.,  Macdonald, R.W., Meyer, T., Wania, F., 2013. The role of the global cryosphere in the fate of organic contaminants. Atmospheric Chemistry and Physics 13, 3271‐3305. Hung, H., Chi Lee, S., Wania, F., Blanchard, P., Brice, K., 2005. Measuring and simulating atmospheric t ti t d f l hl i t d bi h l i th N th H i h At E i 39 6502 6512concentration trends of polychlorinated biphenyls in the Northern Hemisphere. Atmos. Environ. 39, 6502‐6512. Hung, H., Kallenborn, R., Breivik, K., Su, Y.S., Brorstrom‐Lunden, E., Olafsdottir, K., Thorlacius, J.M., Leppanen, S.,  Bossi, R., Skov, H., Mano, S., Patton, G.W., Stern, G., Sverko, E., Fellin, P., 2010. Atmospheric monitoring of organic pollutants in the Arctic under the Arctic Monitoring and Assessment Programme (AMAP): 1993‐2006. Sci. Total  Environ. 408, 2854‐2873. IPCC, 2013. Fifth Assessment Report (AR5). in: Intergovermental Panel on Climate Change, W., UNEP (Ed.). Jantunen, L.M., Helm, P.A., Kylin, H., Bidleman, T.F., 2008. Hexachlorocyclohexanes (HCHs) In the Canadian Archipelago. 2. Air−Water Gas Exchange of α‐ and γ‐HCH. Environ. Sci. Technol. 42, 465‐470.p g g γ , Kallenborn, R., Halsall, C., Dellong, M., Carlsson, P., 2012a. The influence of climate change on the global  distribution and fate processes of anthropogenic persistent organic pollutants. Journal of Environmental Monitoring 14, 2854‐2869. References Kallenborn, R., Reiersen, L.O., Olseng, C.D., 2012b. Long–term atmospheric monitoring of persistent organic pollutants (POPs) in the Arctic: a versatile tool for regulators and environmental science studies.  Atmospheric Pollution Research 3, 485‐493. Macdonald R W Harner T Fyfe J 2005 Recent climate change in the Arctic and its impact onMacdonald, R.W., Harner, T., Fyfe, J., 2005. Recent climate change in the Arctic and its impact on  contaminant pathways and interpretation of temporal trend data. Sci. Total Environ. 342, 5‐86. Malanichev, A., Mantseva, E., Shatalov, V., Strukov, B., Vulykh, N., 2004. Numerical evaluation of the PCBs  transport over the Northern Hemisphere. Environmental Pollution 128, 279‐289. N PD M El M K Mill H D Cl k B W V Ti L A W l tt K C E i K N L i E DNoyes, P.D., McElwee, M.K., Miller, H.D., Clark, B.W., Van Tiem, L.A., Walcott, K.C., Erwin, K.N., Levin, E.D.,  2009. The toxicology of climate change: Environmental contaminants in a warming world. Environment  International 35, 971‐986. Toose, L., Woodfine, D.G., MacLeod, M., Mackay, D., Gouin, J., 2004. BETR‐World: a geographically explicit  model of chemical fate: application to transport of α‐HCH to the Arctic. Environmental Pollution 128, 223‐ 240. UNEP/AMAP, 2011. Climate Change and POPs: Predicting the Impacts. in: UNEP/AMAP (Ed.). Wong, F., Jantunen, L.M., Pucko, M., Papakyriakou, T., Staebler, R.M., Stern, G.A., Bidleman, T.F., 2011. Air‐g, , , , , , p y , , , , , , , , Water Exchange of Anthropogenic and Natural Organohalogens on International Polar Year (IPY)  Expeditions in the Canadian Arctic. Environ. Sci. Technol. 45, 876‐881. Wöhrnschimmel, H., MacLeod, M., Hungerbuhler, K., 2012a. Global multimedia source–receptor  relationships for persistent organic pollutants during use and after phase–out Atmospheric Pollutionrelationships for persistent organic pollutants during use and after phase–out. Atmospheric Pollution  Research 3, 392‐398. Wöhrnschimmel, H., MacLeod, M., Hungerbuhler, K., 2013. Emissions, Fate and Transport of Persistent  Organic Pollutants to the Arctic in a Changing Global Climate. Environ. Sci. Technol. 47, 2323‐2330. Wöh hi l H T P W ld H H H Li YF M L d M H b hl K 2012bWöhrnschimmel, H., Tay, P., von Waldow, H., Hung, H., Li, Y.F., MacLeod, M., Hungerbuhler, K., 2012b.  Comparative Assessment of the Global Fate of alpha‐ and beta‐Hexachlorocyclohexane before and after Phase‐Out. Environ. Sci. Technol. 46, 2047‐2054.