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Plasmas for environmental protection INP&%’;
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New possibilities fostering of innovative plasma-based
exhaust gas and water treatment techniques

Sustainability analysis of plasma-based environmental

3 thematic working groups: NOx/SOx; VOCs; polluted water

EU-Project “PlasTEP”

Project with 14 partners from the g
J Baltic Sea Region with the aim of IM") 1)1
PlasTEP dissemination and fostering of plasma l/w:‘ﬂ =

based technological innovation for a

Sea Region

www.plastep.eu S,
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G632

Programme 2007-2013 ;
Part-financed by the European Union
(European Regional Development Fugd)

Plasma Technology = Environmental technology INP&%’;
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Waste incineration
= Thermal plasma for burning of solid waste and hazardous gases

Energy and ressource saving technologies
= Substitution of wet chemical processes (surface processing)
= Use of solvent free products due to surface treatment

Depollution technologies
= Decomposition of pollutants
= Filtering of PM (Electrostatic precipitators)

Plasma based generation of active compounds
= Ozone for water treatment or chloride-free bleaching

Efficient lightsources
= Energy saving due to efficient light generation
= Plasma based UV-lightsources for surface processing and curing etc.
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Emission sites and effects
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Thermal Processes

1 TO, Thermal Oxidation

2 RTO, Regenerative Thermal
Oxidation

3 Catalytic Oxidation with
Recuperation

Filtering/Adsorption

4 Biofilters

5 Scrubber

7 Adsorption Container

8 Concentrator Unit with TO
9 Filtering

Non-thermal
Oxidation

6a Electrical Non-thermal oxidation
6b UVS Non-thermal Oxidation

Haus der Technik, Essen/GER
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Introduction
- Plasma technology as an environmental technology

Exhaust treatment by non-thermal plasmas - Basics
- Gas discharges for exhaust treatment

- Discharge physics and plasma chemistry

- Example for plasma chemistry: Ozone synthesis

- Hybrid processes

- Flue gas treatment (NOx and SOx removal)

- VOC-removal
- Particulate matter removal

Water treatment

- Advanced Oxidation

- Electro-hydraulic discharges

- Antimicrobial treatment by indirect treatment of liquids

Summary and Outlook

: ré
Gas discharges for exhaust treatment GINP e
Barrier discharge Corona
High voltage
Gas
Grounded electrode Wire electrode Grounded electrode

Dielectric electrode
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Stack reactor (Barrier discharge) INP&%
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Stack system with structured electrodes

Surface DB with ion-extraction INP&%

reifswald 7

| — Surface
Discharge

Open System
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(Corona) radical shower INP&%
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<= :‘*3' = Applied in particular to NOx-removal
’ = = Plasma treats only a portion of gas
S, flow, creating active species, which
- L8 then treat the total gas flow as a
j ~Shower"
| ‘54
s 12
Chang et al, MacMaster Univ. CAN
N
Packed bed reactors INP*;%@J

Filing:

n Pe”ets Quartz plate s

= Foams \ (—

Quartz plate =

Ground electrode

Fig. 2 DBD in the pores of a ceramic loam/schematic electrodes
setup.
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M. Kraus et al, ABB
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Processes and time scales
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Plasma chemistry based on non-thermal activation of particles via

collisions
- quality and quantity determined by kinetic parameters (v,

| Plasmaphysics

mean’ Vcoll)

| Plasma chemistry

+ + + + + + + + + + +
1012 10 109 108 107 10% 105 104 103 101 10 time
Energy lonisation iffusi ins
distribution of o eery Diffusion
Dissociation
electrons o
Excitation Heat and mass transfer

/‘ / Attachment \
E/n Charge «—— ™ possible mechanisms

exchange with different probability
) (different energy thresholds)
lon reactions 3..10eV for dissociation and radical
forr_nat_ion_
Reactions of/with active >10eV  forionisation
species

Reactions of/with radicals
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Air chemistry in cold non-thermal plasma
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MICRODISCHARGE IN "AIR" (20% 0, /80 % N3 )
10_3 T ‘ T T
= 3
o 0(°p)| ’
: = T = 03
_Na(A) ‘
@x X[ 0g(a) . ‘
= . .0 |
= % SN 11—
73] B0
s} " = - N2 O
> =
g W 0% — NO N2Os
° long 7 NG
ﬂ Electrons / %7
s 10705
— I 77 77
o N NOp
&
& 1072 \Q&
{o=" 10—¢ 10~3 1 103
TIME (s)
Homogeneous model (143 reactions, 30 reacting species)
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U. Kogelschatz, B. Eliasson
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Ozone synthesis GINP&%;’;
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Aerosol particle formation INP’;%%’)

Reactions of larger radicals (CHO, CHN) with
cluster ions and molecules

Generation of nitric acid (HNO ;) = reaction
with radicals

. = x10d | © Pul:;ed‘ (70J/L) i
Promotion of P o eum ||| 0%
VOC removal g flameemf oo 7
E |
due to hetero- ERE o
. ! (e}
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Figure 18. Aerosol formation from the decomposition of
Kim, Plasmas and Polymers benzene (200 ppm benzene, 0.5 vol.-% water vapor). Aerosol
2004 was measured by SMPS (TSI Co.).
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NO,-conversion INP%@%
NO
N, NO3—%—N,0s5
+N +0
+ O, + O3 ;+H2i +OH
NO NO, HNO,
+0 N
+OH + OH
HNO, N,O
= Oxidative pathways dominate (espacially in case of
humid conditions)
= Reduction at (to) high energy input
18
VOC removal reactions INP’%&’JJ

Free electrons: e- + {O,, H,0, ...} > OH, M* & HO,, O,

10 — 30 eV/OH-radical
-> Saturated Hydrocarbons (e.g. alkane):

Dehydro- R-H+O > R+OH
genization R-H+OH > R +H,0 Re ... organic radical
Oxidation R+0, 2> R-0-0 R-O-O ...peroxy radical
Further oxidation Radical chain
to CO, and H,O reaction

R,-0-O + R,-H > R,O0H +R,
ROOH ... alkyl hydroperoxide

-> Unsaturated Hydrocarbons (e.g. alkane):
Additionally radical addition following oxidation,
radical chain reaction or polymerisation of hydrocarbons
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Example: Formaldehyde (CH ,0) INP&%%
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= destruction of CH,O results dominantly from chemical attack
by OH and O radicals

= primary end products: CO, H,O

= destruction rates typically 2-8 ppm/(1 J/I)

L—»{ HCOOH f_i.‘ H,0, COZ,HJ

Storch and Kushner, J. Appl. Phys. 1993 20
NTP vs. RTO INP’?@%
Regenerative
NTP-VOC Thermal Oxidation
removal: (RTO):
10 — 30 eV/VOC-molecule 0.1 eV/molecule

.

per molecule of air

e

Lower energy consumption in NTP if VOC-concentration
> 0.3 ... 1% (3.000 — 10.000 ppm)

21
Fridman, Drexel University
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Evaluation GINP%%
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= Specific Energy Density SED (J/IL) = R/ Q
(Spec. Input Energy SIE)

Pyis - .. dissipated plasma power; Q ... gas flow

» [CO,]
. - Seq (%) = —————— x 100
CO,-Selectivity Scq, co, (%) [C0.1+[CO] %
o« [COJ+[CO,]+[HCOOH]
= Carbon balance CB CB (%)= 2 x 100

n([VOCJ, ~[VOC))

[VOCh -[voC]

= Decomposition efficiency 7 77 (%)= [VOCh
(Destruction and removal

efficiency, DRE)

[VOC]y ... inlet concentration;
n ... number of C-atoms

22
Kim, Plasmas and Polymers 2004

Energetic efficiency GINP’%?J
J/L
Energy Cost = A/[C] x 250 (eV/molecule)
AlC
G-value = Al x 0.4 (molecules/100 eV)
T/L
AlC
Energy Yield = J[ /im x 0.15 (g/kWh)

where m is molecular weight of the gas compound. The
factors of 250, 0.4 and 0.15 in the equations are the con-
version factors at 20 °C and 1 atm.

A[C] ... removed amount of molecules in ppm

23

Kim, Plasmas and Polymers 2004
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Evaluation: SED-plots INP%@%’
'>?° a slope =
S &
SED In ( [2?5)
[VOC] = [VOC], exp(-SED/B) SED = -B In([VOCJ/[VOC],

1/B = kg ... energy constant

ke = f( Temp, gas comp., [VOC] , ...)

24

Veldhuizen, TU Eindhoven

Energy cost GINP’%%}
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Energy Price significantly depends on initial concentration

Few ppm: energy price reaches very high values (not all active species can
target VOC molecules)

Higher concentrations: fraction of energy for removing pollutant molecules
higher and energy spent for elimination of each single molecule decreases

25

Gutsol and Fridman, Drexel University
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Depollution of gases INP’:%‘%J
+ Decomposition of contaminants without heating

+  Wide range of pollutants (Gases ... Particulate Matter PM)

+ Decomposition of organic PM

+ High efficiency for low contamination (e.g. deodorization)

([vOCs] <149 C, /m?3)

- High energy cost/molecule = high energy for high concentrations
- Uncompleted conversion and by-products = low selectivity (CO,)
- Deposition of polymer films in reactors = unstable plasma source

Possibilities
= Indirect treatment (Bypass installations)
= Hybrid methods = combination of plasma with ...

... catalysts
... scrubbing ]
... adsorbents Heterogeneous reactions
and synergies!
Hybrid NTP / Wet Processes GINP&%%’;

@]
Thin film \ Gas in l l Na,SO, salution

>
Water /

ol »

Piasma %
ﬁ reactor Wet scrubber

fiter jmecer]
‘I—‘\:,
Gasin
- Clean gas
L -

(a) Single-stage (b) Two-stage

Figure 4. Hybrid NTPreactors combined witha wet process: (a) single stage, (b) two stage.

= Removal of reaction intermediates or final products from
gas phase by adsorption and/or chemical reaction

= Gas-phase NTP enhance liquid-phase chemical reactions

= Electrical discharge over a liquid surface - modify mass-
transfer characteristics

. 27
Kim, AIST JPN

Part 3: Environemntal aspects

13



R. Brandenburg (INP Greifswald), Innolec
Lectureship Brno 2012

Falling water BD-reactor

S —

(o)

Water flows up through vertical hollow cylindrical electrode
and flows down making thin water film over high voltage
electrode

- treatment of water (dyes)

- treatment of gas phase combined with scrubbing

Removal of undecane (non-soluble) = scrubbing of by-product (formic acid)

8
2
5

=
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Greifswald

Page 28 V. Kovacevic, M. Kuraica; Belgrade University

Plasma and catalyst: shift of temperature range INP&%%’;
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Dichlormethane (DCM) decomposition
Catarysi\ BaTiOg

. . - e i
DCM with Titanium dioxide %ﬁ&ﬁ N
:g B - L High Voltage j e 4 Vidkie:

DCM destruction (%)

0 100 200 300 400 500

Temperature ( C)

—e— Plasma Catalysis —=— Thermal Catalysis —A—Plasma

29

Greifswald

Whitehead et al, Manchester Uni.
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Overall process of plasma based removal I P w
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Barrier discharge (Mikro discharges) Post-treatment

2777 Gas

Scrubber, Catalyst,
Adsorber

1. Breakdown phase (ps ... ns)
= |onisation, Dissociation, Excitation ... = lons, Electrons & Radicals

2. Reaction phase (us ... ms)

= Recombination and conversion of ions and radicals
(primary radicals OH, O - sekundary radicals O3, HO,, ...)

= Oxidation of pollutants Schadstoffe

= Surface reactions (activation, structural changes)

3. Post phase (ms ... s)

= Diffusion, transport of heat and material, chemical reactions with post reactants
= Aerosol formation

= Adsorption

INP

@rolvswole A.G. Chmielewski et al; INCT Warschau; Kraftwerk “Pom  orzany” Stettin/PL

xé
Electron beam flue gas treatment (EBFGT) INP’:%;}
Boiler
Preheater
Flue gas HO Electron Beam Installation
Phicd

Dry-ESP

Spray NH,
Fly ash cooler Injection By products

([NH), 501)
NH, NO,

NO = NO, - HNO, & NH,NO,
SO, & HSO; & H,S0, & (NH,),S0O,

= 270.000 Nm?3/h of flue gas

= SO, removal efficiency above
95%

= NO, removal efficiency above
70%

= Dose up to 10 kGy
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EBFGT removal efficiency INP’:%
1
(%) 4 SO02
100{ NO« 59:
90-
. NO,
507
S0Q; =280 ppmV
30+ NO, =200 ppmV
tou = 63-85°C
101
2 4 6 8 10

12
(kGy)
Fig. 1. SO, and NO, removal efficiency vs. dose. The results
obtained in the pilot plant experiments.

A. Chmielewski et al., ICHTJ Warzsawa 32

Ozone injection: non-thermal oxidation INP%@%’?)
|«
N — H,0
Cleaned emissions /" 2\ NaOH <
x HCl
8 . |50, Na,s0,
N £ [NaOH > Nacl
E
NO 5 HNO,3 & NaNO,
SO, NoOs | N,Os > HNO,

NO, Reactor
0, NO & O3 2...2 N,0O4 H,O

Na,sO0, ————
O, NaCl
Lam>—

E. Stamate et al.; Fuel 2010 33
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LOTOX (Low Thermal Oxidation) & EDV Scrubbing INP&%
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Water droplet separation

PM 2.5 removal

SO, & PM removal

N,O5 conversion to
HNO,

NO, NO, conversion

to N,Og
34
| . | B2
Plasma-unterstutzte Katalyse (NH;-SCR) N
Greifswald 7
Exhaust gas
 Guonizing chammber | Catat "
Ozunelzn zonizing chamber alalytic reactor
8
Exhausl gas——L DED reactor W Catalytic reactor ’—~ g0
i o . : 2 4
1 NO oxidation Catalytic reduction |
| & H —@— Plasma (wihout CyHy)
i '§ i 0 —O— Plasma (with CHe)
i 5 : —¥— Ozone injection
3 :
E § % Energy Aggswly(JlL) 150 i
i S Fig.5 Comparison of the ozone injection method with the
; i direct application of the DBD plasma in terms of the NO
: Flow direction | oxidation performance (initial NOy: 300 ppm; temperature:
- B RN BTy, Lo

ANO +4NH, +0, — 4N, +6H,0; T =200°C
NO+ NO, +2NH, — 2N, +3H,0; T <100°C wenn: [NO]O[NO,]

S.M. Young; Plasma Sci. Technol, 2006 35
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Plasma-enhanced SCR (selective catalytic reduction) INP&%
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Volume Barrier Discharge comb. with urea-SCR

Plasma + Kataly-
sal0r (gemessen)
Plasma + Kataly-
salof (berechnet)
Katalysator
Plasma
= up to 85% NOXx reduction under cold start and urban driving conditions
= |ess than 300 W of plasma power applied
= model studies: fuel penalty introduced estimated to be below 2%.
’ 36
T. Hammer; Plasma Sources Sci. Technol. 2002
Multi-stage treatment with molecular sieves I \l Pi%%’;
Greifswald 7

Catalytic supported NTP plant for 10,000 m3/h of waste air
.f : E. e, R

J —
Figure 11: Catalytic supported NTP plant for 10,000 m*h of waste air behind
flavouring processes for food

1. Enrichment of high-molecular compounds in molecular sieve buffer

2. Oxidation of odours with a plasma stage

3. Expellation with desorption air combustion of VOC contingents with
catalyst (after sev. months of molecular sieve loading)

37

R. Rafflenbeul, Envisolve.com; Germany
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Bypass operated plasma plants INP&%@";
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fattening pellets. @ > ﬁ,
™ 3 =0
"‘ 1000m°M
~20°C
35000m*h
4 1

Figure 14: Diagram of a NTP pilant for odour reduction in factories for
producing fatting food and fish meal (very humid emissions)

¢ Indirect plasma treatment of polluted gas by plasma treat ed

gas
. 38
R. Rafflenbeul, Envisolve.com; Germany
Deodorization unit (commercial) INP&%@";

Plasma-CAT (UTD Co., Swiss)
Two-stage Plasma-Catalyst System
Flow rate = 55,000 Nm?hr
Odor concentration =
Removal efficiency = 94%~99%

Specific input energy =

Construction cost = ¥ 140,000,000

oEEr—)__

] HART. SYAN. T/VORE

B X B
RASAORILEWRRUT S S OHR SRBME=FEIRPTIU=IEF T

. 39
Kim, AIST Japan
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PlasmaNorm-Technology GINP{%%
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Deodorization of exhaust
from ovens for
convenience products
made of meat

(1.5 MW ovens; exhaust
stream of 8000 Nm3/h)

Cooker hoods for large-scale
kitchens, gastronomy and private
hausholds

M. Langner; Airtec competence GmbH

Mobile laboratory for paper/pulp mills INP{%«%

reifswald 7

10 kw
750 m3/h

41

A. Fridman, A. Gutsol (Drexel) 2005
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Pilot plant for H ,S removal INP ‘ZQJ

Grvlf:v\’v\d
vt

=)
=

L e

_ plasma treatment
80 )
Adsorption method
(activated carbon)

70

H2S removal rate [%]

Cell filled Air : 120ppm
with r thickness - 50mm
dsorby 60
0 5 10 15
Time [h]
(b)

Figure 4. H28 removal test using the pulsed streamer discharge. (a) Test system and (b) results.

(b)

42

Greifswald

A. Mizuno, Plasma Phys. Control. Fusion 49 (2007) A1-A15

Process features INP ‘?ﬁ

Grvlf:v\’v\d

® Commercialized NTP system

10’000 _E Thermal Oxidation

] 5 | Adsorption

i :
= i i Thermal/CAT
g_ 2 | Oxidation

5 | o

3 11000 . 3 i Catalytic Oxidation
s
= ] Blofitration, . IH I L 4
o ‘ i
= N :
8 - T SRR - Adsorption
5} 1003 g ® |
o . 3
o 3 2
o 3 2 |

I = Nonthermal Plasma

10 | ® 0
T rrrr I T T T T I‘ T | T T T T TrTTT | T
10 100 1,000

Gas flow rate (m3/min)

(Original format from J.A. Dyer, K. Mulholland, Chem. Eng., pp. 4-8, 1994)

INP .

Grettewald Kim, AIST Japan
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Economical benefit INP?{@”’;
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Investment- and running costs

Investment A= Investment Costs Operating  Carbon Dioxide
Costs in Costs €h  Emissions tla
1000 € C = Carbon Dioxide Emissiens
1000 100
80 — 350
60
40 —+175
20
0
Thermal Catalytic R v Biol | M Sieve  Non Thermal
Combustion Cembustion Combustion Purfication Duplex Plasma Technique

Figure 15: Investment- and running cost comparison of waste air
purification processes (50,000 m°N/h) for <100 mg VOC/m? in the flavour
processing industry

INP “

Greifswald

R. Rafflenbeul, Envisolve.com; Germany

Plasma & Catalyst INP%

Greifswal

Enhancement of retention .
e £Iie) CoieaTiEien Adsorption of pollutants
Increase of electron L L
temperature and density < Electric field enhancement ‘
© 17
E ’ Voltage potential across Increase of work function 2\
%) @©
m . B
E Surface regeneration 3]
’ Local heating > Increase of surface area o
Change of oxidation stage
’ Active species > Formation of active sites
Enhance dispersion of active
components
G J
Y
Enhance energy efficiency Improve selectivity Extend cat. durability

INP -

AR Chen et al., Environ. Sc. Technol. 43 (2009) 2216; Van Durme et al., Appl. Catal. B 78 (2008) 324
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Soot removal GINP"‘;\%%’
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BD-reactor with porous filter electrode

porous SiC—
electrode

gas outlet

Soot

insulated
electrode

N ep— -y ‘4 -
J. Grundmann, S. Muller, R.-J. Zahn; Plasma Chem. Plasma Process. 25 (2005) 26
Patente WO 2005/028081, DE 197 17 890, ...

Soot-removal GINP"‘;\%%’

+ NO,; Soot-NO,
+N03/ \
+ 9% (+0y)

+ O, + NO;
+ NO,; + NO,4

(1) fast reaction with HC

20 (2) forming of Soot-O

: 1,692 em’fs (a)
L R o ragedensmf] 15T
1973 em’ss (0 10 =

s 1.62e-3 em’/s (d) o)
45 ©

Y

(3) decomposition of Soot-O

) 5
1200 1800 2400 3000 36&)
it [s]

1
0 600

47
J. Grundmann, S. Muller, R.-J. Zahn; Plasma Chem. Plasma Process. 25 (2005)
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. . . %
Plasma Regenerated Diesel Particle Filter (DPF) I Q P’:%éj
NO, and O,
incineration with direct NTP power
NTP reactor
(T4 > 200 T)
NO, and O,

incineration with
indirect NTP reactor
(T4 > 200 T)

NO+0QO, -~ NO, +0,
C+2NO, - CO,+2NO (T >200C)
C+0, - CO,+4#0, (T>23C)

M. Okubo et al.: Thin Solid Films, 2006 Fig. 4 Metal DPF before and after NTP regeneration 48
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1. Introduction
- Plasma technology as an environmental technology

2. Exhaust treatment by non-thermal plasmas - Basics
- Gas discharges for exhaust treatment
- Discharge physics and plasma chemistry
- Example for plasma chemistry: Ozone synthesis
- Hybrid processes
- Flue gas treatment (NOx and SOx removal)

- VOC-removal
- Particulate matter removal

3. Water treatment
- Advanced Oxidation
- Electro-hydraulic discharges
- Antimicrobial treatment by indirect treatment of liquids

4. Summary and Outlook
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Water treatment - Overview INP&%%
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Water cleaning

— | T~

Physical Biological Chemical
methods methods methods
Sedimentation Biochemical Ox. Oxidation
Filtering Anaerobic cleaning Disinfection
Flotation
Plasma

50

Water treatment - Overview on plasma methods INP&%%
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Gas in
Remote uv- Indirect Direct
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: xé,
Indirect plasma treatment INVP*;%@
@ = Use of “classical gas discharge” for water
treatment, no special efforts (power supply,
] --||| nd >
Lo independent on water conditions, ...)
Lo ~= Indirect interaction of atmospheric
A v . . . .
RN pressure plasma with liquids mainly based
on reactions at gas/plasma-liquid interface
= Bulk effects based on diffusion processes
= Biological (bactericidal) effects of plasma
treatment mainly based on changes of
liquid: resulting in generation of more or
less stable reactive species
52
5. Water treatment I Pﬁ?fg
Bulk effects by indirect treatment g NW»V
Generation of H * - pH change Riagma Phases of spreading:

(methyl orange as pH indicator)
’

y 2 ;@ surface reaction
S - directed gas phase-liquid

interaction

spreading phase
formation of a diffusion
front

Generatlonk of hl_trlte Rlasma
(Spectroquant® — nitrite test)

Diffusion influenced
by gradients

e. g. temperature,
magnetic fields

U

,Drop and structure
formation®
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Indirect treatment of non-buffered liquid GINP e
Inactivation of suspended vegetative microorganisms
' 15 E. coli
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Acidification and generation of nitrate, nitrite (peroxynitride) and hydrogen peroxide
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Greifswald 54
b K. Oehmigen et al., Plasma Process. Polym. 7 (2010) 250-257

Plasmas in Water

High but pulsed electric field strenght and pulsed discha rge in water enable
fast and efficient biological and chemical decontamina tion without additional
chemistry

= Effects due to electric field, radiation (UV), radicals and schock waves

= Dependent on puls parameters: temporal inactivation or killing

streamer reactive

species

electric
field

sRockwaves

INP

Greifswald J. Kolb, INP Greifswald/ODU Norfolk
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Summary and Outlook

reifswa

= Plasma technolgy is (already) an environmental technology at all!

= NOx, SOx, VOCs and other gaseous contaminants can be
decomposed in non-thermal plasmas (NTPs) via ,radical based”

plasma chemistry.

= Exhaust treatment by means of NTP is especially suited for low

concentrations in small and medium gas flows.

= Applicability/feasibility is determined by the specific situation (type
and amount of contaminants, properties of gas flow) and has to

consider effectivity and selectivity.

= There is a large potential for hybrid/catalytic/heterogenous methods.
= Generation of plasma at or in water is possible and leads to

antimicrobial and chemical effects.
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See you Lituania
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Apply now for the 3rd PlasTEP summer school
and entrepreneurs' course in Vilnius/ Kaunas
16.07. - 27.07.2012

Participants that are leaving at the end of the twelfth day
will have developed a network of contacts in the field of
plasma technologies and environmental protection and
will have gained a broad overview of the issues
surrounding sustainable environmental technologies
development and implementation

The participation and accomodation for summer
school students is free of charge!

PlasTEP

plasma for environment protection

p

http://www.plastep.eu/english/newsdetails/einzelansicht/article/60/

Programme 20072013
Part-financed by the European Union
(European Regional Development Fund)
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