Inorganic nanoparticulate materials: Characterization and applications

1. MFNP & Optical methods

- in situ UV-vis growth monitoring
- global approach to separation and analysis
- applied NP ligand strategies Eco/Life sciences:
- surface chemistry,
- plasmon, luminescence

2. Solar sector

- NP-thermodynamics/kinetics
- Photocatalysis
- Solar cells

3. ICT sector (Information and communication technology)

- Transparent conductors
- electrochromy/electroluminescence
- planar wave guides and web amplifiers

4. Fractal approach to analysis

- introduction to fractals
- concept of fractal dimension
- examples of D_f determination

Ch 1. Optical monitoring, total analysis and tailoring multifunctional nanoparticles MFNP (sizes << 100 nm)

Nanostructures semi-conductrices : Le gap optique varie avec la taille des particules!!

Optical absorption in ZnO et TiO₂

ZnO size ~ 5 nm

Size dependent spectral shift for R(particle) < R (exciton) "Gap-Size" correlation function

L. Brus
1983
$$E_{nano}[eV] = E_g^{bulk}[eV] + \frac{h^2}{8\mu_{eff}R_p^2} - \frac{1.8e}{4\pi\varepsilon_r\varepsilon_0R_p}$$

ZnO:

$$E_{nano}[eV] = 3,37 - \frac{1.35}{D_p} + \frac{8.47}{D_p^2}$$

$$\begin{split} &\mathsf{E} = \mathsf{gap} \; \mathsf{energy} \; (\mathsf{eV}) \\ &\mu_{\mathsf{eff}} = \mathsf{effective} \; \mathsf{exciton} \; \mathsf{mass} \\ &\epsilon_r = \mathsf{dielectric} \; \mathsf{constant} \\ &\epsilon_0 = \mathsf{vacuum} \; \mathsf{permittivity} = 8,854 \; 10^{-12} \; \mathsf{Fm}^{-1} \\ &\mathsf{Dp}, \; \mathsf{R}_\mathsf{p} = \mathsf{particle} \; \mathsf{diameter} \; \mathsf{,} \; \mathsf{radius}) \; (\mathsf{m}) \\ &\mathsf{e} = \mathsf{elementary} \; \mathsf{charge} = 1,602 \; 10^{-19} \; \mathsf{As} \\ &\mathsf{h} = \mathsf{Planck} \; \mathsf{constant} = 6,626 \; 10^{-34} \; \mathsf{J} \; \mathsf{s} \end{split}$$

Meulenkamp's finding, JPC B, 1998 ZnO: **1.37 8.47** $E_{nano}[eV] = 3.3 - \frac{1.09}{D_p} + \frac{294}{D_p^2}$

Joshua Jortner, 1991:

$$P_{nano}(N) = P_{makro} + \alpha N^{-\beta}$$

Power law relationship

P = property N = atomic number in cluster α , β = empirical coefficients

Number of molecules per particle

$$N_a = \frac{4\pi R_p^3 M_r N_A}{3\rho_p} = V_p \times N_A \times V_m^{-1}$$

 V_p =particle volume N_A = Avogadro number V_m = molar volume

VERS

TANA BR

 $\Delta \mathbf{E} = \mathbf{\alpha} \times \mathbf{N}^{-\beta}$ 0,6 0,2 ZnO -0,6 CdSe -1,0 -1,4 2 5 1 3 4 6 0 log N

Chemical elemental analysis, MS, etc..needed to identify the clusters

 α , β = ? Physical meaning of α , β remains to be searched !!

Recall:

Optical monitoring of the particle size distribution (PDS)

 E_{a} (eV) = 1240 / λ (nm) ~ f(R⁻², R⁻¹, R^{- β})

Structural/optical monitoring of NP's Up-scaling processes

SAXS: small angle X-ray scattering (gyration size, aggregate structures) Raman analysis of phonons (lattice and superficial molecular vibrations, fs-Laser induced non-linear optical signals

Hartlieb et al, Chem. Mater. 2007

Coupled linear UV-vis and non-linear optical (HRS) nanocolloid growth monitoring

Hyper Rayleigh Scattering

Isolation and total chemical analysis of monodispersed NP's

Goal: quantification of atoms and molecules inside and in shells ligand exchange and addition processes tailoring for biomedicine (theranostics) and standardizations

Characteristic parameters of spherical nanoparticles

sample	n _A	(n _s /n _A) ×100 [%]	A = 3/R _p ρ [m²/g]	V _m = Μ/ρ [cm³/moL]						
SiO ₂	92 R ³	82	1132	60,08 / 2,648						
TiO ₂	99 R ³	81,7	750	101,96 / 4,00						
Al ₂ O ₃	126 R ³	78	709	79,86 / 4,23						
ZnO	174 R ³	74	535	81,4 / 5,6						
Ag	245 R ³	68	285	107,86 / 10,49						
Pt	277 R ³	67	139	195,08 / 21,45						
R _n = 1 nm										

"agglomeration number" molecules per particle

$$n_A = \frac{4\pi R_p^3 M_r N_L}{3\rho_p}$$

Number of surface molecules

$$n_s \approx (n_A)^{2/3}$$

FFF Forced Field Fractionation

FFF-ICP-MS in comparison with HRTEM and DLS

Note!: FFF-ICP-MS : ~ µg/L HRTEM-DLS : ~ mg/L

Nominal	10nm	20nm	30nm	40nm	50nm	60nm	70nm	80nm
TEM	9±1	20±1	32±4	42±4	55±5	67±4	72±3	84±5
DLS	22 (11 - 84)	29 (13 - 90)	41 (15 - 124)	51 (35 - 113)	54 (14 - 121)	67 (32 - 133)	74 (64 - 104)	86 (58 - 142)
FFF-ICP-MS	26	31	40	52	61	75	76	86

Chapter 2 solar sector

Inorganic nanostructures and Solartech

Introduction to renewable energy resources Theory and applications of nanoscaled photocatalysts Classical photovoltaics and future solar cells on the nanoscale

Energy resources of 21 century

Semiconductor (SC) nanoelectrodes in solar sector

Emission spectrum of our sun

SC - Electrochemistry: from micro to nano scale

Thermodynamics and kinetics of semiconductor photocatalysis

- 1. Driving force of interfacial red ox processes $E_{CB,VB}$, E° (red ox)
- 2. Elementary processes in photoexcited nanoparticles: diffusion, recombination, transfer, reaction

 $\mathcal{T}_{\scriptscriptstyle D}$

D ~ 10⁻⁵ m²/s:

énergie

Nanophotocatalyst optimization strategies

spectral profile

visible light active nano's are needed (400 - 600 nm)

Ionge distance charge separation

heterostructures, dopings and surface modifications

morphology of immobilized nanostructures particle shapes, aggregate architectures and mesoporosity

integration into photoreactor prototypes on various scales nanocolloids, powders, thin coatings, photoreactor design

Note: Avoid photo-corrosions CdS, ZnS, Fe₂O₃

Doping delivers better charge separation relevant oxides: TiO₂, ZnO, ZnTiO₃

Rapid separation of electron-hole pairs blocks their thermal deactivation (nr, e-h recombination)

Photocatalysis applications

- 1. Organic preparative synthesis
- 2. Environmental detoxification
- 3. Self-cleaning windows
- 4. Solar water splitting (solar fuels, hydrogen technology)
- 5. Carbon dioxide transformations
- 6. Biosystems in photocatalysis

Photomineralisation of organic pollutants

$$C_{x}H_{y}Cl_{z} + \left[x + \frac{y - z}{4}\right]O_{2} \xrightarrow{hv}{\text{Ti}O_{2}} xCO_{2} + zHCl + \left[\frac{y - z}{4}\right]H_{2}O$$

$$V$$

$$PH = 7$$

$$IIO_{2}$$

$$H_{2}O$$

Solar decontamination of industrial waters in the VW company in Taubate (Brasil) since 1999

Total surface: 50 m² Turnover : 1 m³/jour CATA: Hombikat-TiO₂ (Anatase)

Super-Hydrophilicity via photocatalysis

Asahi Pilkington St. Gobain PPG

Super-Hydrophilicity in the car industry

Super-Hydrophilicity in building constructions

Bacteria killing

Self-cleaning and sterilisation of textiles

$Zn_{x}Ti_{v}O_{z}$ Spinel-Nanostructures

Fd3m a = 840 - 844 pm

Cubic inverse spinels

 $Zn_2TiO_4 = Zn_8^T(Zn_8^Ti_8)O_{32}^O$ $ZnTiO_3 = Zn_8^T (Zn_{8/3} Ti_{32/3} \square_3)^O O_{32}$ $Zn_{2}Ti_{3}O_{8} = Zn_{8}^{T}(Ti_{12}\Box_{4})^{O}O_{32}$

Recall normal spinel: $AB_2O_4 = A_8^T B_{16}^O O_{32}$

 ZnO_6 TiO_6

R3 Ilmenite a = 549 pm h-ZnTiO₃

Synthesis of 2 M "polymeric" Zn_xTi_yO_z Sols

Thermal growth of $Zn_xTi_yO_z$ nanocrystals > 350°C

h-ZnTiO₃/r-TiO₂ films in Photocatalysis Photodegradation of Fetty Acids, Xe-lamp, air, rel. humidity: 80%

Phys. Chem. Chem. Phys. 2010 Krylova et al.

Methylene Blue photodegradation on "ZnTiON"-Spinel layers $(\lambda_{ex} > 430 \text{ nm}, \text{Xe} - \text{Lamp}, \text{humid air})$

L. Spanhel

« Nanotechnology for hydrogen industries »

Required photocatalytic efficiency: 10%

Hydrogen storage

In the car industry: 5-13 kg, ~ 500 km

1. Metal hydrides (chemisorption)

Capacity: 0,076 kg/kg (0,101 kg/L) with nano-Pd

Capacity: 5-10 % w.

Best result on solar water splitting so far ($\phi \sim 5\%$)

K. Maeda et al, Nature 2006

Other Photoreduction processes on combined SC-M hereterojunctions

L. Spanhel

D. Astruc, Univ. Bordeaux RSC-Chem. Soc. Rev. 2014, 43, 7188

D. Astruc, Univ. Bordeaux RSC-Chem. Soc. Rev. 2014, 43, 7188

Theory of Solar Cells of the 1. and 2. generation

Polycrystalline Thin Film Cells

Cell Type	η (%)	Area cm ²	V _{oc} mV	J _{sc} mA/cm²	FF %	Lab / Company	Date
CdTe (cell) 3.5 mm CSS	16	1.0	840	26.1	73.1	Matsushita	1997
CIGS submodule	14.2	51.7	6808	3.1	68.3	Showa Shell	1996
GaInP/GaAs monolithic	30.3	4.0	2488	14.22	85.6	Japan Energy	1996
Si (large thin film)	16	95.8	589	35.6	76.3	Mitsubishi (77µm on SiO ₂)	1997
a-Si (submodule) non stabilised	12	100	1250	1.3	73.5	Sanyo	1992

$$\eta = FF \frac{V_{oc}I_{sc}}{P_{in}} = \frac{V_{max}I_{max}}{P_{in}}$$

Origin of losses in solar cells losses Bornes de \dot{V}_B a cellule

- 1. Dissipation de la lumière limitée
- 2. Relaxation thermique
- 3. Perte lors de la séparation de charges
- 4. Contacts électriques non-idéales
- 5. Désactivation thermique (recombinaison)

p-CdTe/n-CdS heterojunction

Solar Cells of the 3. generation

Nanostructured solar cells – 3. generation cells

"Man-made" micro-électrodes selon le principe de la nature Same approach to nanostructured solar cell and photocatalysts

4. Cellule de Grätzel

Adopted from P. Kamat et al ND National Lab, USA

Notre Dame National Lab

Nanocomposites based on Q-CdSe, CdTe (antenna) and organic Poly(3-hexylthiophene) (hole conductor)

η ~ 5%

Alivisatos et al, Berkeley

Cellule de Grätzel (1988)

Why and how actually is Grätzel cell functioning?

1. Morphology !

ZnO

2. Antenna !

Construction d'une cellule d'après Grätzel

Verre avec FTO

Dye infiltration

Mesure photoélectrique

Infiltration du Kl₃

Carbone electrode

Dr. Andreas Hinsch, FHI, ISE Freiburg Germany

Courtesy Dr. Nam Gyu Park KIST transparent, colorful, beautiful Courtesy Dr. Nam Gyu Park KIST

Transparency: due to nano-sized (~20 nm) TiO2 particle film Color: due to visible light absorption by dye * DSC costs lower than Si solar cell; 1/4 -1/5 of Si solar cell

ply for mobile

10:00 – 11:45,

14:00 – 16:00H

	Dny v týdnu							Týden		
2015	Ро	Út	St	Čt	Pá	So	Ne	Číslo týdne	Pracovních dnů	Ċ
Březen							1	9	0	
	2	3	4	5	6	7	8	10	5	
	9	10	11	12	13	14	15	11	5	
	16	17	18	19	20	21	22	12	5	
	23	24	25	26	27	28	29	13	5	
	30	31						14	2	
Duben			1	2	3	4	5	14	3	
	6	7	8	9	10	11	12	15	4	
	13	14	15	16	17	18	19	16	5	
	20	21	22	23	24	25	26	17	5	
	27	28	29	30				18	4	
Květen					1	2	3	18	0	
	4	5	6	7	8	9	10	19	4	
	11	12	13	14	15	16	17	20	5	
	18	19	20	21	22	23	24	21	5	
	25	26	27	28	29	30	31	22	5	
Červen	1	2	3	4	5	6	7	23	5	
	8	9	10	11	12	13	14	24	5	
	15	16	17	18	19	20	21	25	5	
	22	23	24	25	26	27	28	26	5	
	29	30						27	2	