# Chapter 3 Inorganic nanostructures in telecommunications

3.1 transparent conducting oxide electrodes (TCO)
3.2 electrochromy
3.3 electroluminescence (OLED, nano-based LED)
3.4 planar waveguides and NIR amplifiers in photonic circuits





# 3.1 transparent conducting oxides TCOs

## Introduction

### Figure of merit ~ T/R

**R: lateral resistivity** 

ρ: resistivity

N: free carrier concentration

**μ: carrier mobility** 

t: thickness

e: elementary charge

**T:** optical transmission

### **Desired parameters:**

T (400-1200 nm) > 80%  $E_g > 3 \text{ eV}$ N ~ 10<sup>20</sup> - 10<sup>21</sup> cm<sup>-3</sup>  $\mu > 100 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$ t ~ 500 nm - 1  $\mu$ m  $\rho < 10^{-4} \Omega \text{ cm}$ R < 2  $\Omega$  sq.<sup>-1</sup> (t = 500 nm)

## **Application domaines:**

Photovoltaics (CdTe, Si, CIGS) Telecommunication (LCD, OLED, electrochromy)





## **Smart windows**





Transparent conductors as solar energy materials: A panoramic review

Claes G. Granqvist\*

Solar Energy Materials & Solar Cells 91 (2007) 1529-1598











## Profile spectrale de transmission optique







# **Elaboration of thin film electrodes**





Pulsed Laser Deposition Rf-magnetron sputtering



**Chemical spray** 

q : Solution flowQ : Carrier gas flowTs : Substrate Temperature

C: Concentration

d : Distance





## **Contineous Elaboration of TCO**









 $\mu_{e} < 10^{-3} \, cm^2 / V \, s$ 













ISAM = "ionic self-assembled monolayer", Chem. Phys. Lett. 1998, 298, 315







# **3.2 Chromatic materials**

## **Principle of chromaticism**









CE = coloration efficiency
O.D. = optical density
Q = charge transfered per cm<sup>2</sup>





## Alkyl-viologenes (methyl-, ethyl-)











### Catodic Coloration: WO<sub>3</sub>, MoO<sub>3</sub>, V<sub>2</sub>O<sub>5</sub>, Nb<sub>2</sub>O<sub>5</sub>, TiO<sub>2</sub>, Cu<sub>2</sub>O

|                                                   | colored                                                             |
|---------------------------------------------------|---------------------------------------------------------------------|
| $WO_3 + ne^- + n M^+$                             | $\leftrightarrow$ <b>M</b> <sub>n</sub> <b>WO</b> <sub>3</sub>      |
| W <sup>6+</sup> -O <sup>2-</sup> -W <sup>6+</sup> | W <sup>6+</sup> -O <sup>2-</sup> -H <sup>+</sup> (W <sup>5+</sup> ) |

### **Anodic Coloration:** NiO, CoO, Cu<sub>2</sub>O, IrO<sub>2</sub>

 $\begin{array}{r} \text{colored} \\ \text{Ni(OH)}_2 \ \leftrightarrow \ \text{NiOOH} + \text{H}^+ + \text{e}^- \\ \text{NiO} + \text{Ni(OH)}_2 \leftrightarrow \ \text{Ni}_2\text{O}_3 + 2\text{H}^+ + 2 \ \text{e}^- \end{array}$ 







# **Electrochromic cells**



L. Spanhel





### **Catodic Coloration with propulsion**













### Pilkington, St Gobain, Daimler Chrysler







# 3.3 Photo- and electroluminescence of semiconductor nanoparticles

**Application domains:** 

- 1. Bio-imaging systems
- 2. Electroluminescence (displays)
- 3. Photonic circuits: amplifiers (LASER)















L. Spanhel

### CdS-Cd(OH)<sub>2</sub>





### CdSe-ZnS











Figure 1. Representative room temperature PL (a) and absorption spectra of DT-capped HgTe NCs in CCl4. The insets show the dependence of the PL peaks with the corresponding quantum effici-(a) and illustrate the phase transfer completeness for MEA used as stabilizer (b).

9984 J. Phys. Chem. B, Vol. 106, No. 39, 2002 Energy (eV) ZnS 5.00 3.00 2.00 1.50 1.25 HgS Fluorescence Absorbance fine FUV FUV FUV 1000 800 600 Navelength (nm)





### **PEG-ZnO nanocomposites**



H.M. Xiong et al Adv. Funct. Mater. 2005 Adv. Mater. 2006

### Li-ZnO-SiO<sub>2</sub> "core-shell"



X. Yu et al. J. Lumin. 2006

### PMMA-ZnO "core-shell"









**ELE = electroluminescence efficiency** 





### Cellule électrochimique d'écran électroluminescente

Principe de fonctionnement









### **Molécules actives d'OLED**



1. Alaq<sub>3</sub> = aluminium tris(8-hydroxyquinoline) 2. PPV = poly(p-phenylene-vinylene) 3. PPP = poly(1,4-phenylene) 4. PTh = polythiophenes 5. PF = polyfluorenes





Poly-(3,4-ethylenedioxythiphene)





## Les systèmes polymériques à doubles liaisons conjuguées

PPV = poly(phénylène-vinylène)  $E_g = 2,5 \text{ eV}$ émission jaune-vert







## Dopage des semi-conducteurs organiques

### chimique ou électrochimique

La conductivité passe de 10<sup>-5</sup> à 10<sup>3</sup> S/cm





### Électroluminescence avec nanostructures semi-conductrices

*« Band gap engineering » avec nanocristaux quantiques Taille moyenne: 3 nm – 10 nm* 













#### Langmuir 2006, 22, 2407-2410









# Electroluminescence in nanocrystalline bilayers [Al<sup>3+</sup>@ZnO / Mn<sup>2+</sup>@ZnS - Znl<sub>2</sub> / Al]

# Znl<sub>2</sub>(TBP)<sub>2</sub> – infiltré TP 5 NACT **(0) 60** 100 Amp

J. Phys. Chem. B 1998





**.600** 

AGK

200









émission des deux côtés















Miniaturized plastic TV (180000 pixel, at present 500000pixel)





# **3.4 Photonic nanomaterials**

**Photonics = Science of light** 

production, guiding and manipulation of light formation and treatment of images





LASER


## Waveguides (passive, active)

## **Coupling methods:**



Fig. 213: Methods of optical coupling by means of: (a) a lens; (b) end-butt coupling;(c) prism; (d) grating; (e) tapered coupler; (f) coupling by optical tunneling.

#### **Descartes rules:**

#### 1. Total reflection

- n<sub>film</sub> > n<sub>substrat</sub>, n<sub>air</sub>
- 2. Number of guided modes m

$$m \propto rac{m{e}}{\lambda} \cdot m{n}_{_{\!\!film}}$$





#### **Propagation losses**



Damping coefficient : k<sub>A</sub> [dB cm<sup>-1</sup>]

$$k_{A}[dB \cdot cm^{-1}] = \frac{10}{x}OD = \frac{10}{x}\log\frac{I_{0}}{I}$$

**Optical Absorption :**  $\alpha[cm^{-1}] = \frac{\ln 10}{10} \cdot k_{A}[dB \cdot cm^{-1}]$ 

# Light scattering in composites:

D.O. = 0,325 · 
$$\Phi_{p}$$
 ·  $\mathbf{x} \cdot \mathbf{R}_{p}^{3}$  ·  $\frac{1}{\lambda^{4}} \left( \frac{n_{\text{particule}}}{n_{\text{matrix}}} - 1 \right)$ 





## **Desired quality:**

1 dB km<sup>-1</sup> (longe distances) 0,1 dB cm<sup>-1</sup> (short distances)

sol-gel derived materials:

1. organosiloxanes: k<sub>A</sub> ~ 0,1 dB cm<sup>-1</sup>

2. Metal oxides TiO<sub>2</sub> (2,7) ; ZrO<sub>2</sub> (2,2) ; ZnO (2)  $k_A \sim 0.5 - 2 \text{ dB cm}^{-1}$ 

3. Polymers PMMA k<sub>A</sub> ~ 10 dB cm<sup>-1</sup> **Origin of opt. absorptions:** 

**TELECOM domain 1 - 2 μm:** vibrations of OH's, CH's Electronic transitions of foreign atoms

Silica: < 250 nm Polysiloxanes: 300 - 400 nm Polyphosphazenes: < 220 nm





## Fabry-Pérot coatings



Source: St. Gobain Herve Arribart











## Sol-gel derived nanomaterials:

Bragg reflection produced in alternate  $SiO_2$ ,  $TiO_2$  multilayers Microcavity composed of nanocrystalline  $ZrO_2$  with 10% CdSe



#### Microcavity strongly doped with CdSe nanocrystals

S. Rabaste<sup>1</sup>, J. Bellessa<sup>1,a</sup>, C. Bonnand<sup>1</sup>, J.C. Plenet<sup>1</sup>, and L. Spanhel<sup>2</sup>

<sup>1</sup> Laboratoire de Physique de la Matière Condensée et des Nanostructures, Université Claude Bernard Lyon 1, CNRS-UMR 5586, 43 boulevard du 11 Novembre, 69622 Villeurbanne Cedex, France











## **Critical parameters:**

N = 10<sup>20</sup> - 10<sup>21</sup> Er<sup>3+</sup>/cm<sup>3</sup>
 Mean life time of fluorescence (ms !)



#### Quantum yield of fluorescence

$$\eta = \frac{W_r}{W_r + W_{nr}} = \frac{W_r}{W_r + Ae^{-Bp}}$$

p = phonon = lattice vibration $p = \Delta E/\hbar \omega = 6537 \text{ cm}^{-1}/\hbar \omega$ 









# $p = \Delta E/\hbar \omega = 6537 \text{ cm}^{-1}/\hbar \omega$

| Vibration                                                          | ħω (cm⁻¹) | p - phonons |
|--------------------------------------------------------------------|-----------|-------------|
| O-H                                                                | 3000-3500 | 2           |
| С-Н                                                                | 2800      | 2-3         |
| P-O-P                                                              | 1300      | 5           |
| Si-O-Si                                                            | 1000      | 6           |
| M <sub>x</sub> O <sub>y</sub><br>M <sub>x</sub> Chalc <sub>y</sub> | 300-800   | 8-20        |
| fluorures<br>des métaux                                            | 200-400   | 15-30       |















L. Spanhel













### Filmsintern bei 750°C









# Er<sup>3+</sup>,Si<sup>4+</sup>@ZnO wave guide









Optischer Netto Gewinn 1.5 µm : 3 dB/cm





# Er<sup>3+</sup>,Si<sup>4+</sup>@ZnO vlnovody a multiplexy

## Fotolitografie



## Laserová ablace







# Optické zesílení ve vlnovodivých mikrostrukturách Er<sup>3+</sup>,Si<sup>4+</sup>@ZnO



$$I(L) = \frac{I_{spon.}}{gL} [e^{gL}-1]$$

g = koeficient zesílení L = délka excitace

g = 80 - 100 cm<sup>-1</sup>/500 μm Výkon Laseru < 70 mW

Interní zesílení I/I<sub>0</sub> ~ 50





# Chapter 4 Fractal approach to physical chemistry and materials science















### Chap. 4.1 Dimension d'un objet - D



On se propose d'occuper l'espace de dimension 1, 2 ou 3 de la longueur latérale - L avec un nombre N des initiateurs (molécules) ayant longueur (de liaison chimique) **?** 

$$\begin{array}{l} \mathsf{N}(\mathsf{L}) = \mathsf{m} \ \mathsf{L}^{1} \\ \mathsf{N}(\mathsf{L}) = \mathsf{n} \ \mathsf{L}^{2} \\ \mathsf{N}(\mathsf{L}) = \mathsf{p} \ \mathsf{L}^{3} \end{array} \right\} \quad \begin{array}{l} \mathsf{N}(\mathsf{L}) \thicksim \mathsf{C} \ \mathsf{L}^{\mathsf{D}} \\ \mathsf{log} \ \mathsf{N}(\mathsf{L}) = \mathsf{log} \ \mathsf{C} + \mathsf{D} \ \mathsf{log} \ \mathsf{L} \end{array}$$

$$\mathsf{D} = \frac{\log \mathsf{N}}{\log \mathsf{L}}$$

Relation générale pour les objets de n'importe quelle dimension 0 < D < 3 !





## **Concept of dimension - D in regular systems**

$$D = \lim_{L \to \infty} \frac{\log N}{\log L}$$

D = dimension of an object
N = generator (collection of initiators)
L = linear size of the object

-





generator N = 2 (line) N = 4 (square) N = 8 (cube) Regular objects are characterised by an integer dimension (D = 1, 2 or 3); Their density does not change

$$\mathsf{D}(\mathsf{line}) = \lim_{\mathsf{L} \to \infty} \frac{\mathsf{log}2}{\mathsf{log}2} = 1$$

$$\mathbf{D}(\mathbf{square}) = \lim_{\mathbf{L} \to \infty} \frac{\mathbf{log}4}{\mathbf{log}2} = 2$$

$$\mathbf{D}(\mathbf{cube}) = \lim_{\mathbf{L} \to \infty} \frac{\mathbf{log8}}{\mathbf{log2}} = 3$$





# La dimension fractale

(Introduit par Benoît Mandelbrot)

 $\mathbf{D} = \lim_{L \to \infty} \frac{\log \ \mathbf{N}}{\log \ L}$ 

D = dimension of an object
N = generator (collection of initiators)
L = linear size of the object



N = 5

L = 3

Fractal objects are characterised by a non-integer dimension (1 < D < 3); Their density drops with increasing size

**D (triangle)** = 
$$\lim_{L\to\infty} \frac{\log 3}{\log 2} = 1,584$$

$$D(carré) = \lim_{L \to \infty} \frac{\log 5}{\log 3} = 1,465$$





## Fractal objects are self-similar









## contraction shift operation







## **Fractal Octahedron**



$$D = \frac{\log 6}{\log 2} = 2,585$$
 N = 6 k, L = 2 k

## **Fractal Dodecahedron**

$$\mathbf{D} = \frac{\mathbf{log} \ 20}{\mathbf{log} \ \mathbf{d}/\mathbf{d}_1} = 2,329$$













#### Il y a deux structures différentes et pourtant ayant la même dimension fractale

Structures fractales selon Vicsek:  $D_f = \log 5 / \log 3 \sim 1.465$ 













#### Sierpinski carpet

#### **Koch curve**



#### Menger sponge







#### **David fractal**







## **Classification of fractals and summary of fractal rules**

### 1. Formation par voie itération

soit l'extension soit subdivision

#### 2. Autosimilarité

l'observation du même image sous n'importe quelle résolution

#### 3. Types des fractales (en longueur, en surface et en volume)

aérosols et poussières fractales : 0 < D < 1

périmètres d'un grain ou d'une île,

| surfaces planes  | (mosäiques) : | 1 < D < 2 |
|------------------|---------------|-----------|
| surfaces rechour |               | D > 2     |

| sunaces iocneuses, iugueuses   | D 7 Z     |
|--------------------------------|-----------|
| agrégats colloïdaux, éponges : | 2 < D < 3 |

#### 4. Masse volumique n'est pas constant dans l'espace fractale!

conséquence: distributions multimodales de pores/particules souvent observées

### 5. Dimension fractale reflet le mécanisme de croissance

structures déterministes (régulières) et stochastiques (irrégulières) on trouve structures différentes ayant la même dimension fractale!





# Chap. 4.2 Mesures expérimentales de D<sub>f</sub>



#### Stratégie principale:

On cherche a compter le nombre de détails en fonction de la taille du segment  $\epsilon$  choisi pour le recouvrement d'une structure complexe





## "Standard tiling relations"

Longueur L (périmètre) =  $N(\varepsilon) \varepsilon \sim \varepsilon^{-D} \varepsilon \sim \varepsilon^{1-D}$ 

- Surface A (couche) = N( $\epsilon$ )  $\epsilon^2 \sim \epsilon^{-D} \epsilon^2 \sim \epsilon^{2-D}$
- Volume V (agrégat) = N( $\epsilon$ )  $\epsilon^{3} \sim \epsilon^{-D} \epsilon^{3} \sim \epsilon^{3-D}$

grandeur ~ (résolution d'une mesure)  $\beta$  (D, ...)

**Power law!** 











**Physisorption des molécules** Surface A = N( $\epsilon$ )  $\epsilon^2 \sim \epsilon^{2-D}$ 







## Physisorption de N<sub>2</sub> (BET)

condensation capillaire



Mésoporosité, 2 nm < R<sub>p</sub> < 50 nm

 $R_{p} = -2 \gamma V_{m} / RT \ln (p/p^{\circ})$   $R_{p} \sim 1 / \ln (p/p^{\circ})$   $\varepsilon = R_{p} \rightarrow V \sim R_{p}^{3-D} \sim [\ln (p/p^{\circ})]^{D-3}$   $V = N(\varepsilon) \varepsilon^{3} \sim \varepsilon^{3-D}$ 

Autre option: variation de la taille des molécules ( $\varepsilon$ ) appliquées en physisorption





## **Mesures SAXS, SANS, LALLS**



**Fig. B2.** Small-angle scattering curve for a disordered particle network. All structural features appear in the corresponding regions of scattering vector q. R and r denote a mean cluster and particle size, respectively; exponents D and  $D_s$ , determining a power-law decay, are a measure of the morphology of network aggregates and particle surfaces, respectively.





## **D**<sub>f</sub> à partir des mesures de fluorescence
















