Lecture 3: Sample Preparation

HOW TO PRESERVE A BIOLOGICAL SAMPLE IN HIGH VACUUM ??

- 1. Traditional Thin Section Techniques
- 2. Staining / Shadowing Techniques
- 3. Plunge Freezing Techniques
- 4. High Pressure Freezing Techniques
- 5. Focus-Ion-Beam Milling Techniques

Sample Preparation Techniques

Thin Sectioning Techniques

- A. Chemical fixation (aldehydes, osmium)
- B. Sample dehydration (EtOH, acetone)
- C. Plastic embedment (epon)
- D. Sectioning (ultramicrotome)
- E. Staining (uranyl acetate, lead citrate)

Chemical Fixation

Chemical fixatives:

- a) Coagulators: cause protein denaturation and aggregation (MetOH, EtOH, HCl)
- b) Non-coagulators: polymerization of macromolecules (aldehydes, osmium oxide)

Factors affecting fixation:

- fixative reagent and sample size
- fixation procedure (fixative concentration, additives)
- external conditions (pH, temperature, duration, osmosity)
- 1) Primary aldehyde fixation (proteins, nucleic acids): 1-3% solution

2) Secondary OsO₄ fixation (membranes, proteins): 1-2% solution

Dehydration and Plastic Embedding

DEHYDRATION: successive washing with 30, 50, 70, 80, 90, 95% solutions

EtOH: most common, least extraction of cellular material

reactive with OsO4, immiscible with epoxy resins

Acetone: more extraction of cellular material than EtOH

less shrinking artifacts, miscible with epoxy resins

Common artifacts due to dehydration:

- extraction of proteins, lipids, etc.

- sample shrinking up to 40 %

- formation of various precipitates

Plastic Embedding: epoxy, acryl or polyester resins

Penetration: successive washes with incresing concentrations of resin

Polymerization: initiated by heat (60°C), UV radiation, catalysts

NB: ultrastructure observed in EM is highly affected by the choice of resin!!!

Ultramicrotomy / Sectioning

- 1) Initial trimming of the plastic block
- 2) Initial slicing of 500 nm sections
- 3) Thin sectioning of 50-100 nm sections
- 4) Recovery of sections and transfer to EM

Ultramicrotomy / Sectioning

- 1) Initial triming of the plastic block
- 2) Slicing intial 500 nm sections
- 3) Thin sectioning of 50-100 nm sections
- 4) Recovery of sections and transfer to EM

Staining and Immuno-labeling

Staining:

- a) uranyl acetate in alcohol solution: staining of proteins and nucleic acids
- b) lead citrate in aqueous solution: staining of membranes and lipids

Immuno-labeling:

- a) pre-embedding protocols (labeling of 50-um sections before fixation)
- b) post-embedding protocols (thin sections on a EM grid before staining)

Negative Staining of Proteins

- sample is embedded in a layer of heavy metal salts
- reveals overall shape and solvent excluded surface

Negative Staining of Proteins

Challenges: even and uniform layer of stain

good adsorption of sample to carbon

stability of the protein sample

Advantages: quick method to screen sample conditions

very high amplitude contrast

stain protects the sample from beam damage

Disadvantages: limited resolution due to stain grain size (20 Å)

flattening and denaturation of proteins

uneven staining complicates image processing

Typical stains: uranyl acetate (stable, high contrast, pH 4)

uranyl formate (fine grain, precipitates, pH 4) ammonium molybdate (neutral pH, unstable) phosphorus tungstate (neutral pH, fine grain)

Negative Staining of Proteins

Metal Shadowing

Annu. Rev. Biophys. Bioeng. (1978) 7, 19

Principle of rotary shadowing

Trendelenburg, MF et al, Histochem. Cell Biol. (1996) 106, 167

- Sample is rapidly frozen in buffer => direct imaging in near-native conditions
- Amorphous water prevents sample damage and is transparent to electrons
- Vitrification is a fast (10^{-4} s) process => freezing rates of 10^{5} - 10^{6} K/s
- Liquid nitrogen is not suitable due to low heat conductivity => ethane
- Aqueous samples are properly frozen only up to 1 um thickness
- Plunge freezing using automated or manual plungers

Ice thickness

Ribosomes, Chris Russo

Extrusion of particles from thin ice

Denaturation at water-air interface

Defitrification

Grid hydrophilicity

no graphene

graphene + 20 s hydrogen

graphene + 40 s hydrogen

Types of EM grids

EM grid material: copper, gold, molybdenum

Mesh sizes: 200, 300, 400 grid-bars per inch

Support film: continuous carbon, graphene, gold

Support film: C-flat, Quantifoil, lacey, holey

Hole size: 1-2 um

Challenges: prevent devitrification at increased tempartures

avoid ice contamination during transfers prepare grids with the right ice thickness

Optimization: sample concentration on the grid

minimize preferred orientations

ice thickness and quality

Advantages: sample is preserved in hydrated state

internal structures are imaged

high resolution information is preserved

Disadvantages: low dose imaging due to radiation damage

low signal-to-noise ratio in images

laborious and prone for error

only few samples can be examined a day

High Pressure Freezing Techniques

- High pressure freezing and freeze substitution
- High pressure freezing and cryo-ultramicrotomy

Freezing in 20 ms at 2000 bars (samples up to 200 um)

High Pressure Freezing Techniques

- Freezing cell tissue at high pressure in liquid nitrogen
- Dehydration of frozen sample at low temperatures
- Plastic embedding at room temperature
- Staining at room temperature

Multivesicular body images courtesy Mark Ladinsky

Traditional Chemical Fixation

Ultra-Rapid Freezing and Freeze-Substitution

High Pressure Freezing Techniques

Freeze substitution (below -70°C)

- reduced ultra-structural changes due to dehydration as seen at room temperature
- fixatives are evenly distributed before crosslinking occurs at elevated temperatures
- embedding at low temperature may better preserve epitopes for immunolabeling

Typical freeze substitution protocol

- 1% osmium oxide in anhydrous aceton at -90°C substituted for 3 days
- 0.1–0.5% gluteraldehyde in acetone at -90°C substituted for 3 days
- warm to room temperature and rinse with acetone
- plastic embedding at room temperature using standard protocols

Cryo-sectioning of high-pressure frozen samples

Advantages: no chemicals or fixatives

imaging of unstained structures

Artifacts: compression, crevasses

vitreous section of yeast cells (SEM and TEM)

Authors: W. Baumeister, F. Bauerlein, J. Plitzko, A. Rigort, E. Villa (MPI-Biochemistry)