



# Indukovaný dipól - indukovaný dipól

-výpočet vyžaduje kvantovou mechaniku a nemá klasickou analogii
 -odvození pomocí poruchové teorie interakce 1/r a použítím multipólového rozvoje
 -podobné kvantově mechanické teorii pro rozptyl (disperzi) světla

-poprvé odvozeno Fritz Londonem

-nazýváno Londonova, disperzní nebo indukovaný dipól-indukovaný dipól interakce

$$V = -\frac{3}{2(4\pi\epsilon_0)^2} \frac{I_i I_j}{I_i + I_j} \frac{\alpha_i \alpha_j}{r^6}$$

*I<sub>i</sub>* je ionizační potenciál
 i-tého atomu

Obecnější - Lifschitzova teorie, kvantová electrodynamicka, polarizovatelnosti frekvenčně závislé - London = statickému řešení pro nulovou frekvenci disperzní interakce v dielektriku je pak:

$$V \sim -\frac{(\alpha_i - \alpha_s)(\alpha_j - \alpha_s)}{r^6}$$

3

#### Polarizovatelnost Table 13.2 Nonretarded Hamaker Constants for Two Identical Media Interacting in a Vacuum (Inert Air) at Room Temperature Clausius-Mosottiho rovnice Hamaker Constant A ( $10^{-20}$ J) Eq. (13.16) Exact $\epsilon_3 = 1$ solutione<sup>a</sup> Absorption Frequency Pe (10<sup>15</sup> s<sup>-1</sup> $\frac{4}{3}\pi\rho\alpha=\frac{n^2-1}{n^2+2}$ Medium Constan Index 3.0 3.7 3.7-5.5 1.333 Water 80 3.75 4.5 5.0 5.2 1.349 1.387 1.411 1.423 1.50 2.375 3.8 4.5 5.0 5.1 7.1 28.9 3.0 3.0 3.0 2.9 3.0 2.6 n-Pentane (C<sub>5</sub>H<sub>12</sub>) n-Octane 1.84 1.95 2.01 2.05 2.25 5.66 10 29.6 1.426 1.501 1.460 1.359 1.361 1.557 1.527 1.527 2.03 2.28 2.24 21 26 2.55 3.2 2.1 2.9 2.1 2.7 2.9 3.0 2.3 2.9 2.9 5.2 5.0 5.5 4.1 4.2 6.5 7.5 3.8 6.6-7.9 7.8 3.8 3.8 5.4-7.0 7.4 1.448 1.60 1.427 6.3 10 7.0 6.5 7–10 7.0 3.2 3.0 3.8 Silica Mica CaF<sub>2</sub> 5--6 13.5 11.6 8 10.2 10.1–11.6 18 8.5 ∞ 19-21 17 25 15 20 15-17 20-50 3.44 1.98 2.65 1.75 2.15 2.26 0.80 2.45 1.8 3.2 2.1 1.6 3-5 18 17 25 15 18 16 25-N,O,I Jacob N. Israelachvili: Intermolecular and Surface Forces 3rd ed. Academic ), Bergströ (\*972), D press 2011 p.263 4

| _ |  |  |
|---|--|--|

# Interakce velkých nenabitých molekul

proteiny, membrány, coloidy a polymery jsou velké molekuly/shluky, jejich van der Waalsova interakce = integrál přes jednotlivé atomy, aditivnost

atomy  $V = - {C \over r^6}$  kde C je konstanta specifická pro dané atomy a prostředí

dz

Ш

5

6

d

z

Interakce atomu s povrchem

$$V_{\cdot|} = -\int_{z=d}^{\infty} \int_{0}^{\infty} N \frac{C}{r^{6}} dx dz$$

počet atomů v prstenci je  $N = 2\pi x \rho dx dz$ 

z geometrie  $r = \sqrt{x^2 + z^2}$ 

dosazením
$$V_{\cdot|}=-\int_{z=d}^{\infty}\int_{0}^{\infty}2\pi x\rho\frac{C}{(x^2+z^2)^{6/2}}dxdz$$

$$\begin{split} V_{\cdot|} &= -\int_{z=d}^{\infty} \int_{0}^{\infty} 2\pi x \rho \frac{C}{(x^{2}+z^{2})^{6/2}} dx dz \\ &= -\pi \rho C \int_{z=d}^{\infty} \int_{0}^{\infty} \frac{1}{t^{3}} dt dz \\ &= -\pi \rho C \int_{z=d}^{\infty} \left[ \frac{1}{2t^{2}} \right]_{0}^{\infty} dz \\ &= -\pi \rho C \int_{z=d}^{\infty} \frac{1}{2z^{4}} dz = -\frac{\pi \rho C}{6d^{3}} \end{split}$$

van der Waalsova interakce atomu s povrchem je 1/d3

#### Interakce atomu s deskou

pokud máme desku (membránu) o konečné tloušce t, integrace od z do (d, d+t)

$$V_{\cdot l} = -\frac{1}{6} \pi \rho C \left( \frac{1}{(d+t)^3} - \frac{1}{d^3} \right)$$

pro velmi tenkou desku (t→0) dostaneme závislost o mocninu kratkodosahovější

 $V_{\cdot \wr} \sim 1/d^4$ 





pro  $R\gg d\,$  se výsledek zjednoduší na  $V_{\bullet |}=-\frac{\pi^2 \rho_{sph} \rho_{surf} CR}{6d}$ 

van der Waalsova interakce proteinu s povrchem může být dalekodosahová 1/d

#### Interakce dvou povrchů

obdobně interakce dvou povrchů na jednotkovou plochu

bu povrchů na jednotkovou plochu
$$V_{||} = -\frac{1}{6}\pi\rho_{surf1}\rho_{surf2}C\int_d^\infty \frac{1}{z^3}dz$$
$$= -\frac{\pi\rho_{surf1}\rho_{surf2}C}{12d^2}$$

8

9

Hamakerova konstanta

je výhodné zadefinovat novou konstantu $\boldsymbol{A}$ 

 $A\equiv\pi^2\rho_1\rho_2 C$  kerova konstanta je nřiblině steiná pro všechny látky neboť  $\ C$ 

Hamakerova konstanta je přiblině stejná pro všechny látky neboť 
$$C \sim \alpha_1 \alpha_2$$

$$A \sim \rho_1 \rho_2 \alpha_1 \alpha_2 \sim \frac{1}{v_1} \frac{1}{v_2} v_1 v_2 = const.$$

hodnoty jsou v rozsahu 1-100kT=0.4-40.0×10<sup>-20</sup> J

| Table 13.1       | Hamaker Constants Determined from Pairwise Additivity, Eq. (13.1) |                                                                 |                                                                |  |  |
|------------------|-------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------|--|--|
| Medium           | VDW Constant,<br>C (10 <sup>-79</sup> J m <sup>6</sup> )          | Density of Atoms,<br>$\rho$ (10 <sup>28</sup> m <sup>-3</sup> ) | Hamaker Constant,<br>$A = \pi^2 C \rho^2 (10^{-19} \text{ J})$ |  |  |
| Hydrocarbon      | 50                                                                | 3.3                                                             | 0.5                                                            |  |  |
| CCI <sub>4</sub> | 1500                                                              | 0.6                                                             | 0.5                                                            |  |  |
| H <sub>2</sub> O | 140                                                               | 3.3                                                             | 1.5                                                            |  |  |

Jacob N. Israelachvili: Intermolecular and Surface Forces 3rd ed. Academic press 2011 p.255

$$\begin{split} \text{přesneji z Lifschitzovy teorie} \\ A_{\text{total}} &= A_{r=0} + A_{r>0} \approx \frac{3}{4} kT \left( \frac{\varepsilon_1 - \varepsilon_3}{\varepsilon_1 + \varepsilon_3} \right) \left( \frac{\varepsilon_2 - \varepsilon_3}{\varepsilon_2 + \varepsilon_3} \right) \\ &\quad + \frac{3h v_{\text{e}}}{8\sqrt{2}} \frac{(n_1^2 - n_3^2)(n_2^2 - n_3^2)}{(n_1^2 + n_3^2)^{1/2} (n_2^2 + n_3^2)^{1/2} + (n_2^2 + n_3^2)^{1/2}} \end{split}$$

| Interacting Media (N<br>1                                                                                                                                                                                                            | lote: For Symmetric<br>3                                                                                                                                                                               | al Systems A <sub>131</sub> = A <sub>313</sub> )<br>2                                                                                                                                                                       | Harr<br>Eq. (13.15)                                                                                             | aker Constant A<br>Exact Solutions                                                                                                                                   | (10 <sup>-20</sup> J)<br><sup>b</sup> Experiment <sup>c</sup>                                                                                             |                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Air (water)                                                                                                                                                                                                                          | Water (air)                                                                                                                                                                                            | Air (water)                                                                                                                                                                                                                 | 3.7                                                                                                             | 3.7                                                                                                                                                                  | _                                                                                                                                                         |                                        |
| Pentane                                                                                                                                                                                                                              | Water                                                                                                                                                                                                  | Pentane                                                                                                                                                                                                                     | 0.28                                                                                                            | 0.34                                                                                                                                                                 |                                                                                                                                                           |                                        |
| Octane                                                                                                                                                                                                                               | Water                                                                                                                                                                                                  | Octane                                                                                                                                                                                                                      | 0.36                                                                                                            | 0.4                                                                                                                                                                  |                                                                                                                                                           |                                        |
| Dodecane                                                                                                                                                                                                                             | Water                                                                                                                                                                                                  | Dodecane                                                                                                                                                                                                                    | 0.44                                                                                                            | 0.4-0.5                                                                                                                                                              | 0.5 <sup>d</sup>                                                                                                                                          |                                        |
| Hexadecane                                                                                                                                                                                                                           | Water                                                                                                                                                                                                  | Hexadecane                                                                                                                                                                                                                  | 0.49                                                                                                            | 0.4-0.5                                                                                                                                                              | 0.3-0.6 <sup>d</sup>                                                                                                                                      |                                        |
| PTFE                                                                                                                                                                                                                                 | Water                                                                                                                                                                                                  | PTFE                                                                                                                                                                                                                        | 0.29                                                                                                            | 0.33                                                                                                                                                                 |                                                                                                                                                           |                                        |
| Polystyrene                                                                                                                                                                                                                          | Water                                                                                                                                                                                                  | Polystyrene                                                                                                                                                                                                                 | 1.4                                                                                                             | 0.95-1.3                                                                                                                                                             |                                                                                                                                                           |                                        |
| Water                                                                                                                                                                                                                                | Hydrocarbon                                                                                                                                                                                            | Water                                                                                                                                                                                                                       | 0.3-0.5                                                                                                         | 0.34-0.54                                                                                                                                                            | 0.3-0.9                                                                                                                                                   |                                        |
| Silica (SiO <sub>2</sub> )                                                                                                                                                                                                           | Dodecane                                                                                                                                                                                               | Silica (SiO <sub>2</sub> )                                                                                                                                                                                                  | 0.07                                                                                                            | 0.10-0.15                                                                                                                                                            |                                                                                                                                                           |                                        |
| Fused quartz (SiO <sub>2</sub> )                                                                                                                                                                                                     | Octane                                                                                                                                                                                                 | Fused quartz (SiO <sub>2</sub> )                                                                                                                                                                                            | 0.13                                                                                                            | -                                                                                                                                                                    |                                                                                                                                                           |                                        |
| Fused quartz                                                                                                                                                                                                                         | Water                                                                                                                                                                                                  | Fused quartz                                                                                                                                                                                                                | 0.63                                                                                                            | 0.5-1.0                                                                                                                                                              |                                                                                                                                                           |                                        |
| Mica                                                                                                                                                                                                                                 | Hydrocarbon                                                                                                                                                                                            | Mica                                                                                                                                                                                                                        | 0.35-0.81                                                                                                       | 0.85                                                                                                                                                                 | 0.5-0.8                                                                                                                                                   |                                        |
| Mica                                                                                                                                                                                                                                 | Water                                                                                                                                                                                                  | Mica                                                                                                                                                                                                                        | 2.0                                                                                                             | 1.3-2.9                                                                                                                                                              | 2.2                                                                                                                                                       |                                        |
| α-Alumina (Al <sub>2</sub> O <sub>3</sub> )                                                                                                                                                                                          | Water                                                                                                                                                                                                  | α-Alumina (Al <sub>2</sub> O <sub>3</sub> )                                                                                                                                                                                 | 4.2                                                                                                             | 2.7-5.2                                                                                                                                                              | 6.7                                                                                                                                                       |                                        |
| Silicon nitride (Si <sub>3</sub> N <sub>4</sub> )                                                                                                                                                                                    | Water                                                                                                                                                                                                  | Silicon nitride (Si <sub>3</sub> N <sub>4</sub> )                                                                                                                                                                           | 8.2                                                                                                             | 5-7                                                                                                                                                                  |                                                                                                                                                           |                                        |
| Zirconia (n-ZrO <sub>2</sub> )                                                                                                                                                                                                       | Water                                                                                                                                                                                                  | Zirconia (n-ZrO <sub>2</sub> )                                                                                                                                                                                              | 13                                                                                                              | 7-9                                                                                                                                                                  |                                                                                                                                                           |                                        |
| Silicon carbide (SiC)                                                                                                                                                                                                                | Water                                                                                                                                                                                                  | Silicon carbide (SiC)                                                                                                                                                                                                       | 21                                                                                                              | 11-13                                                                                                                                                                |                                                                                                                                                           |                                        |
| Ag, Au, Cu                                                                                                                                                                                                                           | Water                                                                                                                                                                                                  | Ag, Au, Cu                                                                                                                                                                                                                  | -                                                                                                               | 10-40                                                                                                                                                                | 40 (gold)                                                                                                                                                 |                                        |
| Water                                                                                                                                                                                                                                | Pentane                                                                                                                                                                                                | Air                                                                                                                                                                                                                         | 0.08                                                                                                            | 0.11                                                                                                                                                                 |                                                                                                                                                           |                                        |
| Water                                                                                                                                                                                                                                | Octane                                                                                                                                                                                                 | Air                                                                                                                                                                                                                         | 0.51                                                                                                            | 0.53                                                                                                                                                                 |                                                                                                                                                           |                                        |
| Octane                                                                                                                                                                                                                               | Water                                                                                                                                                                                                  | Air                                                                                                                                                                                                                         | -0.24                                                                                                           | -0.20                                                                                                                                                                |                                                                                                                                                           |                                        |
| Fused quartz                                                                                                                                                                                                                         | Water                                                                                                                                                                                                  | Air                                                                                                                                                                                                                         | -0.87                                                                                                           | -1.0                                                                                                                                                                 |                                                                                                                                                           |                                        |
| Fused quartz                                                                                                                                                                                                                         | Octane                                                                                                                                                                                                 | Air                                                                                                                                                                                                                         | -0.7                                                                                                            | -                                                                                                                                                                    |                                                                                                                                                           |                                        |
| Fused quartz                                                                                                                                                                                                                         | Tetradecane                                                                                                                                                                                            | Air                                                                                                                                                                                                                         | -0.4                                                                                                            | -                                                                                                                                                                    | -0.5                                                                                                                                                      |                                        |
| Silicon nitride                                                                                                                                                                                                                      | Diiodomethane*                                                                                                                                                                                         | Fused quartz                                                                                                                                                                                                                | -1.3                                                                                                            | -0.8                                                                                                                                                                 | "Repulsion"                                                                                                                                               |                                        |
| CaF <sub>2</sub> , SrF <sub>2</sub>                                                                                                                                                                                                  | Liquid He                                                                                                                                                                                              | Vapor                                                                                                                                                                                                                       | -0.59                                                                                                           | -0.59                                                                                                                                                                | -0.58                                                                                                                                                     | Jacob N                                |
| *Based on dielectric data o<br>(Meurk et al., 1997).<br>*Exact solutions computed<br>thesis), Hom et al., (1988a)<br>*Experimental values from<br>Israelachvili and Adams (19<br>(1990), Meurk et al., (19<br>90ure hadroschonauster | f Table 13.2, assuming n<br>I by Sabisky and Andersc<br>I, Velamakanni et al., (19<br>Israelachvili and Tabor (<br>978), Lis et al., (1982), Ol<br>7), Vigil et al., (1994).<br>and other bydenobolic- | nean values for P <sub>a</sub> . Values for di<br>on (1973), Hough and White (1<br>90), Senden et al., (1995), Berg<br>1972), Sabisky and Anderson I<br>schima et al., (1982), Horn et al<br>water interfaces experience an | iodomethane: a<br>980), Parsegian<br>ström et al., (19<br>(1973), Requen<br>., (1988a), Israe<br>additional byd | = 5.32, n = 1.76, r <sub>e</sub> ,<br>and Weiss (1981), Ci<br>96), Bergström (1997)<br>a et al., (1975), Derja<br>lachvili et al., (1989), '<br>mobobic attraction w | = 2.3 × 10 <sup>15</sup> s <sup>-1</sup><br>iristenson (1983,<br>i, Parsegian (2006).<br>guin et al., (1978),<br>velamakanni et al.,<br>hirch is fully or | Intermo<br>and Sur<br>Forces<br>Acaden |

| 10 |
|----|
|    |

| Přehled van der Waalsových interakcí     |                                                                                    |  |  |  |
|------------------------------------------|------------------------------------------------------------------------------------|--|--|--|
| dvě molekuly                             | $V_{\cdot\cdot} = -\frac{C}{d^6}$                                                  |  |  |  |
| molekula a povrch                        | $V_{\cdot } = -\frac{\pi\rho C}{6d^3}$                                             |  |  |  |
| molekula a membrána                      | $V_{2} = -rac{1}{6} \pi  ho C \left( rac{1}{(d+t)^3} - rac{1}{d^3}  ight)$      |  |  |  |
| molekula a koule<br>s poloměrem <i>R</i> | $V_{\bullet} = -\frac{2}{3}\pi\rho C \frac{R(3d^3 + 6dR + 2R^2)}{d^3(d+2R)^3}$     |  |  |  |
| koule a povrch                           | $V_{\bullet } = -\frac{A}{6} \left[ \frac{2R(d+R)}{d(d+2R)} - \ln(1+2R/d) \right]$ |  |  |  |
| koule a povrch <i>d</i> << <i>R</i>      | $V_{\bullet } = -\frac{AR}{6d}$                                                    |  |  |  |
| koule a membrána                         | $V_{\bullet \wr} = \frac{1}{6} AR \left( \frac{1}{d+t} - \frac{1}{d} \right)$      |  |  |  |
|                                          |                                                                                    |  |  |  |

| Přehled van der Waalsových interakcí                                                                                                    |                                                                                                                       |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|--|
| dvě koule d< <r< td=""><td><math display="block">V_{\bullet\bullet} = -\frac{R_1 R_2}{R_1 + R_2} \frac{A}{6d}</math></td><td></td></r<> | $V_{\bullet\bullet} = -\frac{R_1 R_2}{R_1 + R_2} \frac{A}{6d}$                                                        |  |  |
| dvě koule                                                                                                                               | $V_{\bullet\bullet} = -\frac{A}{6} \left[ \frac{2R_1R_2}{d(d+2(R_1+R_2))} + \frac{2R_1R_2}{(d+2R_1)(d+2R_2)} \right]$ |  |  |
|                                                                                                                                         | $+\ln\frac{d(d+2R_1+2R_2)}{(d+2R_1)(d+2R_2)}\bigg]$                                                                   |  |  |
| dva povrchy (na plochu)                                                                                                                 | $V_{  } = -\frac{A}{12\pi d^2}$                                                                                       |  |  |
| dvě membrány (na plochu)                                                                                                                | $V_{\it W} = \frac{A}{12\pi} \left( \frac{2}{(d+t)^2} - \frac{1}{(d+2t)^2} - \frac{1}{d^2} \right)$                   |  |  |
| válec jednotkové délky a<br>paralelní stěna                                                                                             | $V_{\rm o }=-\frac{A\sqrt{R}}{12\sqrt{2}d^{3/2}}$                                                                     |  |  |
| dva jednotkové válce<br>paralelně                                                                                                       | $V_{\circ\circ} = -\sqrt{\frac{R_1R_2}{R_1 + R_2}} \frac{A}{12\sqrt{2}d^{3/2}}$                                       |  |  |
| dva válce komlo                                                                                                                         | $V_{/\backslash} = -\sqrt{R_1R_2}\frac{A}{6d} \tag{12}$                                                               |  |  |

#### Příklad

Spočítejte van der Waalsovu interakci dvou Lysozymů a Lysozymu a mebrány. Předpokládejte, že Lysozym je koule o průměru 20 nm a tloušťka hydrofobní části membrány je 4 nm. Hamakerova konstanta pro Lysozym interagující se sebou ve vodě je 2.87 x 10<sup>-20</sup>J, zatím co dvě membrány interagující spolu mají Hamakerovu konstantu 0.54 x 10<sup>-20</sup> J.

### Řešení

13

14

# Předpoklady

předpokládali jsme:

- 1. aditivnost vdW ne pro aromatické systémy, ..
- 2. okamžité působení ne rychlost světla

### Derjaguinova aproximace

pro krátkodosahové síly a pro objekty jejichž vzdálenost je menší než jejich zakřivení

$$V_{tot}(d) = \int_{d}^{\infty} w(z) dA$$

kde A je velikost sobě si odpovídajících ploch v objektech pro rotačně symetrické objekty - integrace přes protilehlé disky

$$V_{tot}(d) = 2\pi \int_d^\infty w(z(r)) r dr \qquad \qquad F_{tot} = -\frac{\partial V_{tot}}{\partial d} = 2\pi \omega(z(r))$$



# Hydrofobní interakce



Základ interakce spočívá v silných vodíkových vazbách vody, které hydrofobní molekuly narušují:

- Pro velké ploché povrchy se počet vodíkových vazeb sníží, vody na rozhraní nemají v okolí stejně partnerů provodíkové vazby - entalpický charakter
- U zakřivených povrchů mají vody okolo sebe přibližně stejně vodíkových vazeb, ale jejich rozmístění je omezené - snížení počtu možných kofigurací = entropický charakter

přechod při poloměru zakřivení 1 nm

16



## Příklad na doma

Spočítejte van der Waalsovu interakci dvou paralelních polymerních molekul (řetězců složených z kuliček) na jednotku délky. Pro zjednodušení uvažujte vzdálenost mezi molekulami mnohem větší než jejich poloměr. Výsledek aplikujte na molekuly DNA.

Řešení:  $V = \frac{-3\pi C}{32R^2d^5}$ 

18