
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 147.251.27.31

This content was downloaded on 07/02/2015 at 13:42

Please note that terms and conditions apply.

Exact Aharonov-Bohm wavefunction obtained by applying Dirac's magnetic phase factor

View the table of contents for this issue, or go to the journal homepage for more

1980 Eur. J. Phys. 1 240

(http://iopscience.iop.org/0143-0807/1/4/011)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/0143-0807/1/4
http://iopscience.iop.org/0143-0807
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


240 B Diu 
Eur. J. Phys. l(1980) 240-244. Rinted in Northern  Ireland 

+ J dkf(k)Fk(8, cp) f exp(-iE(k)t/h).  (62) 
0 Exact 

- -~ 

Although the second one is not exactly of the  form 
studied  above,  they can both  be treated by the A h aronov-Bo h m 
stationary-phase  method (P2.1.2). The central-posi- 
tion of the fist  packet is then  found at wavefunction 

hko 
z,(t) =-- m t x ,  = y p  = 0. (63) obtained by 

applying Dirac’s 
As  for  the scattered wave packet, the location of its 

the distance  between this maximum and  the origin 
of the coordinate system is  given  by factor 
maximum depends  on  the direction (e ,  chosen; m a g n etlc p h ase 

rde ,  cp; t ) = - S ; , ( @ ,  cp)+; t (64) M V Berry? hk” 

where S ; ( @  p) is the derivative with respect to k of 
the phase of the scattering  amplitude &(e, cp). 
These formulae are valid only in the asymptotic 
region (that is, for large It\). Their discussion goes 
along the same lines as above. For  large negative 
values  of t, there  is  no scattered wave  packet: the 
waves that build it interfere constructively only for 
negative values of r and  these are, of course,  not 
permitted.  Therefore, all that is found  long  before 
the collision is the plane waue  packet which is then 
to be identified with the incident waue packet. For 
large positive values  of t, both packets are effectively 
present: the first one continues along the  path of 
the incident  packet  and  the  second one diverges in 
all directions. The scattering cross section can then 
be deduced  from the consideration of these wave 
packets. (Actually, one should also allow for slightly 
different  orientations of the incident wavevector k, 
in order  to limit the plane wave packet  not only 
along Oz, but also in the perpendicular directions.) 
Here  too, the same result can be obtained much 
more simply using the ‘probability fluid’ and  the 
corresponding  ‘improper  interpretation’ of a  statio- 
nary state (Cohen-Tannoudji et a1 1977, p 912). 

So the questions raised and  arguments discussed 
in the present paper can actually be applied to a 
much wider domain than just the one-dimensional 
square potential  problems. 
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Abstracl A  solution of Schrodinger’s equation for  a 
particle in a  magnetic field B can be obtained from  the 
wavefunction when B = 0 by Dirac’s prescription of 
multiplication by a  phase  factor. But this  solution is 
often multiple-valued and  hence unsatisfactory. It is 
shown that in the case of the Aharonov-Bohm effect 
the  Dirac prescription  can  nevertheless be  made  to yield 
the single-valued exact wavefunction, provided it is ap- 
plied not to  the total wave with B = 0 but  to its sepa- 
rate components in a ‘whirling-wave’ representation. 
The  mth whirling wave at a  point r is a  contribution 
that has  arrived at r after travelling m times around the 
region  containing B.  

R&mC On  peut  obtenir  une solution de l’bquation de 
Schrodinger pour une  particule placke dans un champ 
rnagnttique B, i partir de  la solution en champ  nul, en 
appliquant la prescription de  Dirac  de multiplication par 
un facteur  de phase. Mais cette solution  est  souvent 
multiforme et,  par suite,  non satisfaisante. On  montre 
ici que,  dans le cas de l’effet Aharonov-Bohm, on  peut 
ndanmoins tirer de  la prescription de Dirac la fonction 
d’onde  exacte,  (et  uniforme); mais il faut  pour cela ap- 
pliquer cette prescription,  non  pas a l’inttgralitt  de  la 
fonction d‘onde en champ nul, mais, stpartment, i ses 
diverses  composantes dans  une  reprtsentation o t ~  la 

est  parvenue au  point r aprbs avoir tourne m fois au- 
tour  de  la rCgion oh se manifeste  le  champ B. 

m*rne composante en r correspond a la contribution  qui 
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1 Dirac’s prescription 
This  article is about  the  quantum mechanics of a 
particle  in the presence of a magnetic field B, which 
will be represented by a vector  potential A. This 
must satisfy 

where the lirst integral is around any closed curve 
C and  the second is over any surface  bounded by C. 
Locally, (1) implies 

B = V A A .  (2) 

Then as is  well known the Hamiltonian operator 
describing the particle is 

Hb, P) = Hob, P - qA) (3) 
where Ho(r,p) is the Hamiltonian  without the 
magnetic field but with all other forces  unaltered, q 
is the charge on the particle and, working in posi- 
tion representation, p is the momentum operator 
-ihV. I shall consider wavefunctions +(r) corres- 
ponding to particles with fixed energy E, which 
must therefore satisfy Schrodinger’s equation 

H(r, - ihV)+(r) = E+(r). (4) 

As pointed out by Dirac (1931), a function +,(r) 
satisfying (4) can be constructed very simply, in 
terms of the wave in the absence of the field, i.e. in 
terms of t+h0(r) which satisfies 

Hob, - ihV)Jl0(r) = E+dr). (5) 
The construction consists in multiplying Jl0 by a 
‘magnetic phase  factor’ as follows: 

where  ro is an  arbitrary fixed position. 
The  trouble with Dirac’s  prescription is that al- 

though $tD satisfies the wave equation (4) it is not 
single-valued and  therefore  cannot correctly rep- 
resent  the  true  quantum  state in the presence of B. 
To see why (6) is multivalued, let r be transported 
round a loop C back to  the same  point.  During  this 
process, the phase of (6)  changes by 

where according to (1) CPc is the flu of B through 
C. As well as being multivalued, JID would, if it 
really represented  the  state, imply that  the magne- 
tic field has  no effect on  the probability  density I+Iz, 
which is obviously not the case. 

Despite these difficulties, Dirac’s prescription  has 
been used in an inexact way to  make predictions 
about  the effect of a magnetic field, and  these  have 
been  experimentally verified. In this inexact proce- 
dure, it is imagined that Go(r) consists of two parts, 
written as 

corresponding to waves reaching r by different 
routes  labelled 1 and 2. The effect of B is then 
included by incorporating the magnetic  phase fac- 
tor (6) into each part separately.  This gives 

path 1 

+ +F’(r) expc; 1: A dr) 
path 2 

where CP is the flux through the loop  from ro to r 
along path 2 and back to r along path 1. In physical 
terms,  this  result  redicts a change in the interfer- 
ence between 4:‘ and +Lz’ because their  relative 
phase  has  been changed by the factor involving CP. 
But the exponential  prefactor  remains, and will st i l l  
cause JID to  be multivalued and  hence unsatisfac- 
tory. 

My purpose here is to show, using the example of 
the Aharonov-Bohm effect, how Dirac’s prescrip- 
tion can in fact be used to obtain the exact 
wavefunction in the presence of a field. The proce- 
dure will be  to decompose IL0, which of course is 
single-valued, into an infinite number of compo- 
nents (‘whirling waves’), each of which is multi- 
valued, then to apply (6)  to each whirling wave, 
and finally to resum the magnetically phase-shifted 
whirling waves to get the exact single-valued 
wavefunction 9. 

2 Aharonov-Bob effect for thin solenoids 
Aharonov  and Bohm (1959) considered a field B 
confined within a long  straight  solenoid  directed 
along the z axis and  containing flux CP. Charged 
particles with energy E and mass m are incident 
from the positive x direction (figure 1). They are 
scattered by the solenoid but cannot penetrate  into 
it. Aharonov  and Bohm came to  the surprising 
conclusion (which  is still controversial-see Casati 
and  Guarneri (1979), Roy (1980) and  the remarks 
at  the  end of the  paper by Berry et al (1980)) that 
the flux CP can affect particles even  though the 
region containing the field is inaccessible to the 
particles. This comes about because the Hamilto- 
nian (3) involves CP not  through its field B but 
through the vector  potential A, which, because of 
(l),  cannot vanish outside the solenoid,  since its 
line  integral  must equal CP. I shall use the simplest 
potential satisfying this  condition, namely 

A(r) = “ 8  
01 

2 m  
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Path 1 ( m  = 01 
f"""""""" 

r. I" 

Incident 
C" particles 

Figure 1 Geometry of the Aharonov-Bohm 
effect. The solenoid is shown in cross section as 
a black circle and carries flux of a magnetic field 
normal to  the page.  Two paths reaching  a  point r 
are shown; the broken path is equivalent to 
path 2. 

where r, 6 are plane  polar  coordinates  and 6 is the 
azimuthal  unit  vector. 

In the simplest case, the solenoid is idealised as 
being infinitely thin, so that we are considering 
scattering by a single flux line. The incident  beam 
has the wavefunction 

$o(r) = exp(-ikx) = exp(-ikr cos 8) (11) 

where 

k = m / h .  (12) 
We seek the wave $ when @ is non-zero.  This must 
satisfy the 'inpenetrability'  condition that t/t = 0 on 
the flux line at  r = 0. 

Consider first the Dirac  prescription (6). With ro 
taken at  a  point on the positive x axis this involves 
the phase 

where CY is the magnetic flux parameter, defined by 
a q@/h. (14) 

Therefore (6)  converts (11) into  the magnetically 
phase-shifted wave 

qD(r) = exp(-ikr cos 0 +icre). (15) 

The multivaluedness is  now explicit: $D changes by 
a  factor exp(2aia) during  a circuit of the solenoid, 
and this factor is not unity unless a is an integer, 
i.e. unless the flux  is quantised.  Moreover, JID does 
not vanish at r = 0. 

3 Poisson transformation to whirling waves 
In obtaining the exact  solution $ from the solution 
(11)  without the field, the first step is to express Go 
as an angular  momentum  decomposition into  par- 

tial waves by making use of the relation  (Gradsh- 
teyn and Ryzhik 1965) 

LC 

exp(-ikr cos 8) = c (-i)"'J,,,(kr) exp(il8). (16) 

The modulus signs on two  of the 1 indices do not 
affect the value of the sum but  are nevertheless 
important for a  reason soon to be  explained. 

Next, we transform the summation  over 1 by 
means of the Poisson summation  formula (Lighthill 
1958). For any summand F(I) ,  this replaces the 
sum by a series of integrals over F(h)  which is any 
'interpolation' of F(1) to non-integral values of its 
variable. The formula is 

I =-r 

3 m .cc c F ( O =  c J dhF(A)exp(2~imh).  (17) 
l=-=  m=-- -cc 

When applied to (16) it gives 
LC 

t/to(r, 8) = c Tm(r, 8) (18) 
m="" 

where 

T,(r, e)= dA exp(-$ia  (A()JIAl(kr) 1-1 
x exp[ih(8 +2am)]. (19) 

The terms T, are not single-valued. In fact 

T,,,(r, 8 + 2 ~ ) =  Tmtl(r, 8) (20) 

as follows easily from  (19). It is this relation that 
ensures the single-valuedness of the sum (18) de- 
spite the multivaluedness of its  terms. 

Now comes the most important  step, which con- 
sists of an interpretation of T, based on the fact 
that these terms contain 8 in the combination 8 + 
2am. This is to restrict 8 by -a < 8 +T and then 
interpret T,,,(r, 8) as a wane am'uing at 8 after 
making  m anticlockwise circuits of the  origin. I shall 
call T,,,(r, e) the  mth 'whirling-wave' component of 
&. Each whirling wave is a (multivalued) solution 
of Schrodinger's equation without the magnetic 
flux. Therefore, Dirac's prescription (6) can be 
applied to yield a whirling wave satisfying 
Schrodinger's equation in the presence of the flux. 
The phase is given by (13), but instead of 8 we 
must write 8+2am because that is the total angle 
turned through. The new whirling waves are  there- 
fore 

TE(r, e) = Tm(r, 8) exp[ia(8+2~m)].  (21) 
Summing over m gives, on using (19),  the wave 

m 
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On defining A +a as a new variable this can be 
reverse-Poisson-transformed to give 

m 

J,(r, 0) = c (-i)l"a'J,l-a,(kr) exp(iI0). (23) 

The wave (23) satisfies Schrodinger's equation 
and is manifestly single-valued. In fact it is the 
exact  solution of the problem originally obtained by 
Aharonov  and Bohm (1959), who used a quite 
different  procedure.  When the flux  is quantised, i.e. 
when a is an integer,  (23)  reduces simply to the 
incident wave (11) multiplied by a  phase  factor 
exp(ia0) which is single-valued. When a is not an 
integer, (23) contains a wave scattered out towards 
r = m by the flux line, as well as  a complicated 
phase structure centred on  the flux line; since both 
these aspects of the Aharonov-Bohm wavefunc- 
tion have  been recently discussed by Berry et al 
(1980), I shall not dwell or, them further  here, 
except to  make  one point.  This is that  for non- 
integral a, when the flux has  a physical effect on the 
wave, J, as given by (23) vanishes as r + 0, showing 
that  the wave is indeed zero where the flux  is 
non-zero. If the modulus signs had not  been in- 
serted into  the original summation (16), this  rzsult 
would not have  been  obtained,  and indeed the 
integrals (19) for  the individual whirling waves 
would have diverged. 

[=-m 

4 Generalisation and discossion 
Now let the solenoid be of finite radius.  This can be 
modelled by a cylindrically symmetric scalar poten- 
tial fie!d with a  'hard  core' at a finite radius, pre- 
venting the particles from  entering  the region 
where the flux  is. The wave J,o in the absence of the 
flux is now not just  the incident wave (ll), but 
includes the wave scattered by the cylinder. There- 
fore  the partial-wave decomposition of Jl0 is 

m 

+O(r, e) = C Rllltr) exp(ile) (24) 
I =-m 

where Rlll(r) is the solution of the radial equation 
with angular  momentum (I) obtained by separation 
of the variables r and 8 in the two-dimensional 
Schrodinger equation obtained  from ( 5 )  and includ- 
ing a repulsive potential excluding particles  from 
the cylinder. 

Again the Poisson formula (17) can be employed 
to transform the s u m  over l ,  with the result that J,o 
is given by (18) with T,, defined by 

Tm(r, e) = jm dl\ Rl,l(r) exp[iA(8+ 2mn)]  (25) 

instead of (19). And again the T, (r ,  8 )  can be 
regarded as whirling waves and magnetically phase- 
shifted as in (21), to give the wave + scattered by a 
finite cylinder containing flux m: 

-m 

This can be reverse-Poisson-transformed to give 
m 

+(r,  e) = 2 +a , ( r )  e x p W  (27) 
I=" 

which again is the exact  solution. 
The outcome of this analysis is that  it is possible 

to  obtain single-valued wavefunctions by means of 
the  Dirac prescription (6), provided this is applied 
to  the correct  representation of the wavefunction in 
the absence of the field. In  the Aharonov-Bohm 
effect this representation consists of a decomposi- 
tion into whirling waves T,. Mathematically, these 
arise because the impenetrable cylinder makes the 
space multiply connected, so that  paths encircling 
the origin different  numbers of times cannot be 
deformed into  one  another  and must  be given 
magnetic  phase shifts which take account of the 
different  numbers of circuits. It seems likely that 
the same idea could be employed to solve other 
problems involving magnetic fields. 

We are now in a position to understand why the 
inexact argument  presented  in Q1 is often success- 
ful. Depending on  the precise scattering  properties 
of the cylinder, it may be the case that in a  particu- 
lar  angular region only two of the whirling waves 
(25) have appreciable  and  comparable magnitudes. 
These may be  represented, for  example, by the two 
paths shown in figure 1, which correspond to m = 0 
(path 1) and m = -1 (path 2) (to see that  path 2 
does  indeed  correspond to m = -1, simply note 
that  it can be obtained  from path 1 by adding a 
single clockwise circuit of the cylinder as illustrated 
by the broken path in figure 1). Then in this 
angular region we may approximate J, by 

8 )  --. To(r, e)+ T-l(r, e) (28) 

which is precisely of the previously assumed form 
(8). Applying the Dirac  prescription  (21) now  gives 
the analogue of (2), namely 
J,(r,  e) = exp(ia8)[To(r, 6) +exp(-2i~a)T-~(r,  e)]. 

(29) 
As noted  earlier, this is not single-valued. Now  we 
can see why: although the neglected whirling waves 
( m  # 0 or -1) are small in the angular region consi- 
dered, they become large when 8 increases by 2 a  
(because of (20)) and must be included if J, is to  be 
single-valued after a circuit of the cylinder. 

The whirling waves T,, into which Go is decom- 
posed are unfamiliar, and I conclude with a brief 
discussion of them. For a cylinder whose radius is 
large in comparison with the  de Broglie wavelength 
2a/k of the incident wave, it is valid to employ 
semiclassical methods to  obtain  an asymptotic ap- 
proximation  for Go. Such analysis is  now standard 
(see e.g. Rubinov 1961, Berry and  Mount 1972) 
and yields the result that  the Poisson formula  leads 
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to contributing T,,,(r, e) which can be expressed in 
terms of trajectories arriving at r, 8 after encircling 
the origin m times. If the cylinder is surrounded by 
a region of attracting  potential,  some of these tra- 
jectories can be actual classical orbits winding 
smoothly arovnd several times before emerging. 
Otherwise,  they can be ‘diffracted rays’ (Keller 
1958) which skim around  the impenetrable  surface 
of the cylinder before emerging tangentially. But I 
emphasise that  the whirling-wave representation is 
exact and fully quantum mechanical, independent 
of any semiclassical interpretation. This  should  be 
clear from the fact that it was introduced in 03 as a 
representation of a  plane wave without any scat- 
terer, so that  the whirling waves are a  consequence 
of choosing a line in space  (later to be occupied by 
a flux line) around which rotations  are  to be 
counted,  and  around which no ‘real’ rays are wind- 
ing. In this case formula  (19)  for the whirling waves 
can be reduced  a little by contour integration: 

T,,(r, e) = exp(-ikr cos e)&,,, 
(T + iy) exp(ikr cosh y) 
(T + iy)’- (e + 2 ~ m ) ’  

(-T < e  S +T). (30) 

The first term  in this strange  representation is just 
the original plane wave being decomposed,  and 
winds zero times around  the origin. The  other  term 
gives zero when summed over m, as it must,  and 
radiates  outwards as well as whirling. 
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Abstract It is being argued that even in non-relativistic 
quantum mechanics the  coordinate  and momentum  vari- 
ables  cannot be  interpreted directly as observables. 
Only by defining these by suitable  test  bodies  can we 
obtain verifiable predictions.  When  these  arguments  are 
implemented on a Wigner distribution we show that 
positive phase  space  probabilities always ensue,  and 
hence this function  can be used as  a quantum mechani- 
cal phase  space  function. 

Zusammenfassung Es wird gezeigt, dass  auch in der 
nichtrelativistischen Quantenmechanik  die  Koordinaten 
und Impulsvariablen nicht direkt als Observable  inter- 
pretiert werden  konnen.  Nur wenn man  diese  Grossen 
durch  geeignete Testkorper definiert kann man 
iiberpriifbare  Vorhersagen  erhalten. Die Anwendung 
dieser Argumente auf eine Wigner’sche Ver- 
teilungsfunktion zeigt, dass sich stets positive 
Wahrscheinlichkeiten im Phasenraum  ergeben, und dass 
diese  Funktion daher als Mass fiir den  quanten- 
mechanischen Phasenraum  dienen  kann. 

1 Introduction 
The relationship  between  a quantum mechanical 
description of particles and its classical counterpart 
has  been the  object of much discussion. The  stand- 
ard  method  to obtain the classical limit (Dirac 
1958) makes  contact with classical mechanics at 
one of its  least intuitively transparent points, the 
action principle of higher dynamics. As the 
Hamilton-Jacobi formalism deals with families of 
trajectories rather than individual objects, one can 
easily make a  transition to phase  space statistical 
mechanics. On  the  other hand, quantum mechanics 
deals with statistical predictions only, and hence it 
is natural to regard its classical limit to comprise a 
description in terms of ensembles. The agreement 
between the classical limit of quantum mechanics 
and  a classical ensemble is an agreement  about the 
0143-0807/80/040244+05$01.50 0 The Institute of Physics & the EPS 


