4. DIAMAGNETISM OF METALS

It is shown that in quantum theory even free electrons, besides spin-paramagne-
tism, have a2 non-vanishing diamagnetism originating from their orbits, which
is due to the limitation of the electron orbits in the magnetic field. A few further
possible inferences concerning this orbit limitation are indicated.

1. Up to now, it has been more or less quietly assumed that the magnetic
properties of electrons, other than spin, are due exclusively to the binding of
electrons in atoms, For free electrons, the classical zero-result is assumed for
the orbital effect, on the basis that the Fermi integral of the corresponding
Hamiltonian, just as the Boltzmann function, is independent of the magnetic
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sinee, as is well known [z, ¥] = [Py, P.] =0, 9., 2] = [9s, ¥] = #/i. The constant
on the right-hand side of equation (4) is reminiscent of the nsunal p, g-commu-
tation relation. In order to come back to that case, we can now temporarily
introduce the co-ordinates P and @ by means of

v = P oo = e H 2 (5)
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The commutation relation reduces into the usual form [P, ¢] = &/i. The equa-
tion referring to the energy can now be written in the form:
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where ¢ is a constant and ¢ is no longer dependent on #. If we substitute equa-
tion (12) in equation (11), we obtain immediately for ¢ an oscillator equation
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which is just as we should expect from what has previously been said. The:

“equilibrium point”’ of this oscillator is at the point 4 = ¢ ofe H. Thus, we
obtain finally for the complete eigenfunction of the system :
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If, now, we wish to obtain the total number of eigenvalues corresponding
to the given non-degenerate quantum number #, then we have to substitute
do = (e Bfe) H in equation (17). This gives
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where S is the area of the container sides. Altogether we have
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- thus, as was to be expected, proportional to the volume. It can be easily checked
that equation (19), as a result of the limiting transition & — 0, converts into the
usuai eigenvalue distribution of free motion. Together with the spin, we have
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over all eigenvalues; o denotes the so-called chemical potential. The number

of particles N is linked with o through the expression
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This condition is no longer fulfilled at very low temperatures and in strong
fields. On account of this, the latter case should lead to a complicated, no
longer linear dependence of the magnetic moment on H, which should have
a very strong periodicity in the field. Because of this periodicity, it should
be hardly possible to observe this phenomenon experimentaily, since on account
of the inhomogeneity of the existing field, an averaging will cceur. If, however,
we average the series in equation (29) over an interval 4 H, the condition for
equation (31) will again be fulfilled, i in the ‘‘dangerous™ part near
o —[n+ (1/2)] u H = 0, the change of argument is considerably larger than the
difference between the two successive arguments, i.e.
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Even with the strongest possible fields (H = 3 x 105 gauss), the right-hand side
gives only 0-1 per cent with o = 3eV.
I we now use the summation formula (30} explicitly, we obtain
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{f (c0) = 01. The first term of this summation is independent of the magnetic
field. It represents the summation in the field-free state, so that in place of
equation (34) we can write
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4hus, free electrons are altogether still paramagnetic.
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mteractlon consists in the fact that the diamagnetism loses its symmetry and

o A o Al by Sea whiala L ~L oe. ...
now UUPULXU.E o1 Qir UQLLULL, a _PI.U_PUI Ly X WRICH U.\ub b_yy!‘; Ol u.ld:uldzéﬂ.v{/lbm UJ-.U.UJ.H-

1
‘from the normal atomic diamagnetism as well as from the necessarily symmetri-

A ginilar phenomenon can also take place in non-conducting substances
and indeed with paramagnetic substances, where we also have a continuous
eigenvalue spectrum. Here, we also get dise_e.@ eigenvalues in the magnetic
field and, as a result of this—diamagnetism. This diamagnetism is quite small
compared with the paramagnetism whr“h ig presv-nt, but differs from it by ifs
asymmetry, so that perhaps it forms the main basis of the observed asymmetry
in paramagnetic crystals (another reason is the so-called magnetzc or relativigtio
interaction between spins). On this account, it is of interest to e
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the lattice. Moreover, only # and the density N/V can stul make their
appearance. Clearly this leads to the expression
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The exchange integral J determines. as is well-known, the Curie temperature 6,
and % @ is of the order of magnitude of J, so that in place of equation (38) we
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The phenomena turn out to be quite different if the external effects are of
a non-periodic nature. Such effects destroy the direction-degeneracy of the
motion and consequently, if they cannot be assurmed to be small, the possibility
that the field produces an effect of the type investigated here. This requires
that the “mean free path’ corresponding to this effect is small compared with
the diameter of the electron orbits in the magnetic field. Since this diameter
in normal fields is of the order of magnitude cf a tenth of a millimetre, then even
very small impurities or even powdering of the substance can suffice. Such
changes of susceptibility have been detected in bismuth, and for the first case in
a whole range of substances. It would be of great interest to be able to observe
in these cases a change of susceptibility with field, which ought to take place
according to the present theory, when ry > A(rg is the radius of the orbit in
the magnetic field, i is the mean free path or the dimensions of the crystal)
changes to rg < 4.

In conciusion, I should like to make the supposition that the phenomena
which have been investigated might explain also the Kapitza effect of linear
resistance changes in a magnetic fleld. For the admissibility of the presumed
approximation of free electrons in a magnetic field, it is not necessary that rg
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be smaller than the mean free path corresponding to the lattice (which would
be impossible at normal temperatures), because the interaction with the lattice
oscillations involves, apart from momentum transfer, alsc energy transfer.
However, acoording to the foregoing remarks, it is probably essential that 75
be considerably smaller than the mean free path of the lattice distortions, which
leads, after short calculations, to the expression
7

H>»ec 7 R, (40)
where R is the specific resistance (in electrostatic units) of the crystal. If
inequality (40) is not fulfilled, then the method considered here is not appli-
cable and it can be seen quite easily that all the effects of the field must be
necessarily quadratic. The field in expression (40) is in good agreement with
the oritical field of the Xapitza experiments, which should lend support to

the theory. I have not yet succeeded in presenting a quantitative development
nf the theaorv
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At this stage, [ should like to thank sincerely Mr P. Kapitza for discussions
of the experimental results and for the communication of certain unpublished
data.
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