Introduction to supergravity 2015: Exercise 1.

Institute for Theoretical Physics, Masaryk University, 611 37 Brno, Czech Republic

Here we treat the supergravity multiplet as a theory invariant under the global supersymmetry, therefore the supersymmetric parameter is global

 $\xi_{\alpha} =$ fermionic global parameter (no space-time dependence). (1)

This is possible in the linearized level. The supersymmetry transformations of the <u>linearized free</u> supergravity multiplet are

$$\delta_{\xi}\psi_{m\alpha} = \frac{1}{2}\partial_{n}h_{km} \left(\sigma_{\alpha\dot{\rho}}^{k}\bar{\sigma}^{n\dot{\rho}\rho} - \sigma_{\alpha\dot{\rho}}^{n}\bar{\sigma}^{k\dot{\rho}\rho}\right)\xi_{\rho},\tag{2}$$

$$\delta_{\xi}h_{mk} = -\frac{i}{2}\bar{\psi}_{m\dot{\alpha}}\bar{\sigma}_{k}^{\dot{\alpha}\alpha}\xi_{\alpha} - \frac{i}{2}\bar{\psi}_{k\dot{\alpha}}\bar{\sigma}_{m}^{\dot{\alpha}\alpha}\xi_{\alpha} + \frac{i}{2}\bar{\xi}_{\dot{\alpha}}\bar{\sigma}_{k}^{\dot{\alpha}\alpha}\psi_{m\alpha} + \frac{i}{2}\bar{\xi}_{\dot{\alpha}}\bar{\sigma}_{m}^{\dot{\alpha}\alpha}\psi_{k\alpha}.$$
(3)

The conventions can be found in the book of Wess and Bagger [1].

- 1. <u>Find</u> $\delta_{\xi} \bar{\psi}_{m\dot{\alpha}}$. This can be found by the definition $\delta_{\xi} \bar{\psi}_{m\dot{\alpha}} = (\delta_{\xi} \psi_{m\alpha})^*$.
- 2. Calculate $[\delta_{\xi}, \delta_{\eta}] h_{mn}$. This will have the form

$$[\delta_{\xi}, \delta_{\eta}] h_{mn} = B^r \partial_r h_{mn} + \partial_m \Gamma_n + \partial_n \Gamma_m.$$
(4)

Find B_r and Γ_n and explain what is their physical meaning.

3. Calculate $[\delta_{\xi}, \delta_{\eta}] \psi_{m\alpha}$. This will have the form

$$[\delta_{\xi}, \delta_{\eta}] \psi_{m\alpha} = C^r \partial_r \psi_{m\alpha} + \partial_m G_{\alpha} + \tilde{r}_{m\alpha}, \qquad (5)$$

where $\tilde{r}_{m\alpha}$ will vanish on-shell. Find C_r , G_{α} and $\tilde{r}_{m\alpha}$ and explain what is their physical meaning.

4. Off-shell the graviton (h_{mn}) has 6 degrees of freedom while the gravitino $(\psi_{m\alpha})$ has 12 offshell degreed of freedom. How does this relate to the fact that we need to use the equations of motions to close the supersymmetry algebra?

References

 J. Wess and J. Bagger, "Supersymmetry and supergravity," Princeton, USA: Univ. Pr. (1992) 259 p