TIME AND SPACE

", If you know Time as well as I do, I wouldn't talk about wasting it. It's him (...). Now, if you only kept on good terms with him, he'd do almost anything you liked with the clock. For instance, suppose it were 9 o'clock in the morning, just time to begin lessons; you'd only have to whisper a hint to Time, and around goes the clock in a twinkling: Half past one, time for dinner!"

Lewis Carroll, Alice in Wonderland

I.Discuss the questions below

1. Do you wear a watch?

2. Do you think you can manage your time well, or does time manage you?

3. What is your busiest day of the week? / time of the day?

4. When you have an appointment, do you show up precisely on time, a bit earlier or a little later?

5. Are you a "night owl" or an "early bird"?

6. Have you ever suffered from a jet-lag?

7. What do you think about the idea of Daylight Saving Time (setting our clocks to a different time in the spring and autumn)?

8. What sign of zodiac are you? Do you believe that the time and place in which you were born influence our lives?

9. If time travel were possible, which period of world history would you like to return to? Why? 10. Would you like to travel to the future? How far into the future would you go then? What would you like to see / do?

II.Read the text and fill in the gaps with appropriate words and expressions

Philosophy of Space and Time

Time and space are two of few fundamental quantities, which cannot be defined in terms of other quantities. Thus, they are both defined via measurement. Currently, the standard time interval (called "1.________second" or simply "second") is defined as 9,192,631,770 oscillations of a hyperfine transition in the 133 caesium atom. Time can be combined mathematically with the fundamental quantities of space and mass to 2._______ concepts such as velocity, momentum, 3._______ and fields. The space interval, called a standard meter or simply a meter, is defined as the distance travelled by light in a 4.______ during a time interval of 1/299792458 of a second. This definition 5.______ the present definition of time makes special relativity theory to be absolutely correct by definition.

In classical physics, space is a three-6._____ Euclidean space where any position can be described using three coordinates. Special and general relativity uses spacetime rather than space, and it is modelled as a four-7._____ space (with the 8.______ being imaginary in special relativity and real in general relativity, and currently there are many theories which use more than 4-dimensional spaces).

Some theories, most notably special and general relativity, 9.______ suitable geometries of spacetime may allow time travel into the past and future. Albert Einstein's special theory of relativity predicts time 10.______ that could be interpreted as time travel. It states that, relative to a 11.______, time appears to pass more slowly for faster-moving bodies. For example, a moving clock will appear to run slow; as the clock approaches the speed of light its hands will appear to nearly stop moving. A second type of travel is 12._____ general relativity. In this type a distant observer sees time passing more slowly for a clock at the

JAF02

bottom of a deep gravity 13._____, and a clock lowered into it and pulled back up will indicate that less time has passed compared to a stationary clock that stayed with the distant observer. These effects are to some degree similar to 14._____, (which slows down the rates of chemical processes in the subject) almost indefinitely suspending their life thus resulting in "time travel" 15._____, but never backward.

Many in the scientific community believe that time travel is unlikely, because it violates 16.______, i.e. the logic of cause and effect. For example, what happens if you attempt to go back in time and kill yourself at an earlier stage of your life? Stephen Hawking once suggested that the absence of 17.______ constitutes a strong argument 18._____ the existence of time travels.

time axis, hibernation, dimensional x2, tourists from the future, energy, suggest that, permitted by, conventional, stationary observer, toward the future, interval, causality, coupled with, dilation, against, derive, well, vacuum

1. Cartesian coordinate system	9. sidereal day	17. winter solstice
2. great circle	10. Greenwich Mean Time	18. autumnal equinox
3. parallels	11. Coordinated Universal Time	19. vernal equinox
4. meridians	12. International Date Line	20. tropical year
5. latitude	13. Daylight Saving Time	21. sidereal year
6. longitude	14.altitude	22. Gregorian calendar
7. Greenwich (prime) meridian	15.zenith angle	23. precession
8. solar day	16. summer solstice	

III.Match the terms with the sentences relating to them;

a) circles parallel to the equator

b) designates beginning of winter

c) time used to save energy in the past

- d) the zero meridian
- e) occurs on or near March 21
- f) angular measurement in degrees east or west of the prime meridian
- g) complementary angle of altitude
- h) the time of one revolution of the Earth with respect to a star other than the Sun
- i) a rectangular coordinate system
- j) the angle of the Sun above the horizon
- k) elapsed time between two successive crossings of the same meridian by a star other than the Sun
- l) the equator is an example
- m) designates the beginning of summer
- n) time referenced to atomic clocks
- o) angular measurement in degrees north and south of the equator
- p) occurs on or near September 22
- q) when crossed travelling west, the date is advanced
- r) the year of the seasons

JAF02

- s) half circles that are portions of a great circle
- t) elapsed time between two successive crossings of the same meridian by the Sun
- u) skips 3 leap years every 400 years
- v) the slow rotation of the Earth's axis

w) Zulu

IV.Read the text and try to complete it with relevant information

In 1._____ Einstein published his theory of special relativity, which explored the link between space and time. And Einstein's theory does not define two separate issues. There is just one thing: spacetime, that we all live in. He thought of this new spacetime as a fabric, 2._____ together space and time. In 3._____ Einstein developed his theory of general relativity, which 4.______ special relativity to include gravity in its effects of this fabric of the spacetime. When we roll a ball across the fabric, it seems to be 5.______ to the massive weight at the center.

General theory of relativity was a new theory that told us that gravity works, because the space and time are 6.______ in the presence of matter, and could respond dynamically, space itself could expand and 7._____.

8.______ is a term used to describe the energy and matter that objects contain. The larger it is, the greater is distortion of the spacetime fabric and the stronger the 9.______, which itself is not really a force. It is a fabric, it is a shape of space and time, and we just move along the 10.______ and the shapes. The act of doing so takes what would otherwise be a 11.______, and bends it in what we now describe as 12._____, as 13._____, as pathways through the cosmos.

Einstein said not even light can escape the effects of gravity. The proof arrived in 14.___________in the form of an astronomically large experiment, based on a 15.________. General relativity said that if you looked at a star on a path of light that goes right past the Sun, you would see a shift because of the gravity of the Sun. So Arthur Eddington went out to test that theory during 16.________ and photograph stars when the Sun was blocked by the 17._______, and you could see the stars behind them.

The	ability to see the objects that were actually behind the Sun proved that objects could
18	spacetime. Einstein became a superstar overnight and in
19.	he received the Nobel prize for physics.

V.Complete the following idioms by adding the correct preposition;

- 1. _____ the dot
- 2. _____ the nick of time
- 3. _____ the crack of dawn
- 4. _____ this day and age
- 5. ____ donkeys' years
- 6. ____ due course

now match them with their explanations:

- a) very early in the morning
- b) eventually, at the right time and not before
- c) for a very long time
- d) in modern times
- e) precisely, exactly on time

and use them with the sentences:

1.I expect you to be here at 8 _______.
2.For the big number of applicants, your request will be dealt with _______.
3.It is unbelievable that there are so many people suffering from hunger _______.
4.He loves waking up _______ and have a cup of coffee in bed and read some papers before everybody else in the house gets up.
5.I'm never early and I'm never late, but I do admit to dong things ______.
6.I fully trust him, we've known each other ______.

Sources:

(adapted from) http://iteslj.org/questions/ accessed on 14 April, 2012

(adapted from) <u>www.wikipedia.org</u> visited on April 14, 2012

Shipman, J., J. Wilson, A.Todd (2006) *An Introduction to Physical Science* Houghton Mifflin Company <u>www.youtube.com</u> visited on April 14, 2012