M7116 Maticové populační modely Populace s interní variabilitou - bifurkační diagramy 18.5.2015 Leslieho model s plodností závislou na velikosti populace f Tlx n2 j (í + 1) = \n3 ' ( 0 g(N(t)) bg(N(t)) 0.3 0 0 V 0 0.5 0 / ni n2 I (í) \ri3 N = m + ri2 + 7i3, ô'(^V) = i?e 0.005AT Leslieho model s plodností závislou na velikosti populace f Tlx n2 I (í + 1) = \n3 ( 0 g(N(t)) bg(N(t)) 0.3 0 0 V 0 0.5 0 N = m + ri2 + 7i3, ô'(^V) = ite' 0.005AT o o o o m o o H o m Ä = 3 1 o I 20 —r~ 30 40 50 60 Leslieho model s plodností závislou na velikosti populace / Tli T12 J (t+1) = ( 0 g(N(t)) Sg(N(ť)) 0.3 0 0 V 0 0.5 0 N = m + ri2 + n3, g(iV) = i?e 0.005AT o o (M O O O O O 00 O o CD O O O O I I I I I I I I I I I I I I I I I R =15 "T" 10 20 30 t 40 50 60 Leslieho model s plodností závislou na velikosti populace nA / 0 g(N(t)) 5g(N(t))\ n2 (í +1) = 0.3 0 0 m) \ 0 0.5 0 y (t). 7V = ni+n2+n3, g(N) = Re -0.005ÍV O O Ä = 45 t Leslieho model s plodností závislou na velikosti populace f Tlx n2 I (í + 1) = \n3 ( 0 g(N(t)) bg(N(t)) 0.3 0 0 V 0 0.5 0 N = m + ri2 + 7i3, ô'(^V) = ite' 0.005AT o o o m o o o o o o o m R = 250 "n 1 o i 20 —r~ 30 40 50 60 t Leslieho model s plodností závislou na velikosti populace f Tlx n2 I (í + 1) = \n3 ( 0 g(N(t)) bg(N(t)) 0.3 0 0 V 0 0.5 0 N = m + ri2 + 7i3, ô'(^V) = ite' 0.005AT o § H m o o o o o o o m 50 100 150 200 250 R Model kanibalismu L(t + 1) = bA(t) exp {-ceaA(t) - ceiL(ť)} P(t + l) = (l-fJn)L(t) A(t + 1) = exp {-cpaA(t)} P(t) + (1 - /ia)A(í) L, P, A ... množství larev, kukel a dospělců b ... počet vajíček jedné dospělé samice za projekční interval in, /jLa ■ ■ ■ přirozená úmrtnost larev a dospělců cea, cez, cpa ... „míry kanibalismu" Model kanibalismu L{t + 1) = bA(ť) exp {-ceaA{ť) - celL(t)} P(í + 1) = (l-fn)L(t) A(t + 1) = exp {-cPaA(í)} P(t) + (1 - /Xa)A(í) 6 — 50, /JLl — 0.5, /Xa — 0.3, Cea = 0, Cpa = 0, CeZ o o o o o 00 < a: o o CD O O o o - Model kanibalismu L(t + 1) = bA(t) exp {-ceaA(ť) - celL(t)} P(í + 1) = (l-w)L(t) A(t + 1) = exp {-cpaA{t)} P(t) + (1 - iia)A{b) b — 50, fll — 0.5, /ia = 0.3, cea = 5, cpa — 0, cez G [0,10] larvae 2 4 6 8 c_el pupae 2 4 6 8 10 c_el adults 0 2 4 6 8 10 Model kanibalismu L(t + 1) = bA(t) exp {-ceaA(t) - ceZL(í)} P(í + 1) = (l-fii)L(t) A(t + 1) = exp {-cpaA(t)} P(t) + (1 - Ha)A(t) b — 50, /iř — 0.5, [la — 0.3, Cea = 5, Cpa = 0, Cel = 0 larvae 0 20 40 60 t pupae 0- 20 40 t adults 0 20 40 60 t Model kanibalismu L{t + 1) = bA(t) exp {-ceaA(t) - ceZL(í)} P(t + l) = (l-/xi)L(t) A(t + 1) = exp {-cpaA(t)} P(í) + (1 - Ma)A(t) 6 — 50, /iř — 0.5, /ia — 0.3, Cea — 5, Cpa — 0, Cel — 1 larvae 20 40 "T" 60 "T" 80 100 pupae o o o 20 40 60 80 100 adults CO o ~r~ 20 I 40 I 60 "T" 80 100 Model kanibalismu L(t + 1) = bA(t) exp {-ceaA(t) - ceiL(ť)} p{t +1) = (i - m)L(t) A(t + 1) = exp {-cpaA(í)} P(í) + (1 - /ia)A(í) b — 50, /iř — 0.5, IIa — 0.3, Cea — 5, Cpa = 0, Cel — 1 co o o o o larvae 100 200 300 400 500 pupae o o o o T T" 100 200 300 t 400 500 adults o d o 100 200 300 400 500 t Model kanibalismu L(t + 1) = bA(t) exp {-ceaA(ť) - celL(t)} P(t+l) = (l-fJLi)L(t) A(t + 1) = exp {-cpaA(í)} P(í) + (1 - Ha)A(t) b — 50, 111 — 0.5, /ia — 0.3, Cea = 5, Cpa = 0, Cel — 2 Model kanibalismu L(t + 1) = bA(t) exp {-ceaA(t) - ceZL(í)} P(í + 1) = (l-fii)L(t) A(t + 1) = exp {-cpaA(t)} P(t) + (1 - Ha)A(t) b — 50, /ij — 0.5, [la — 0.3, Cea = 5, Cpa = 0, Cel = 6 o c\i larvae 20 40 60 pupae "T" 20 40 60 adults o 20 40 60 Model kanibalismu L(t + 1) = bA(t) exp {-ceaA(t) - ceZL(í)} P(í + 1) = (l-fii)L(t) A(t + 1) = exp {-cpaA(t)} P(t) + (1 - Ha)A(t) b — 50, /ij — 0.5, [la — 0.3, Cea = 5, Cpa = 0, Cel = 8 larvae 0- 0 20 40 t adults < b _l—i-1-1 r 0 20 40 60