Irreducibility of Polynomials over the Integers

Claudiu Raicu

April 27, 2010

1 Let's warm up!

- 1. Is $X^2 + 4X + 3$ reducible? What about $X^2 + 3X + 4$?
- 2. Show that $X^3 5X + 14$ is irreducible. What about $X^3 51X + 14$?
- 3. Show that $X^4 + 1$ is irreducible. Is $X^4 + 4$ reducible?
- 4. Show that $X^5 + 6X^4 + 6X^3 + 24X + 72$ is irreducible.

2 Take a look at the roots!

- 1. Is the polynomial $X^{18} 18$ irreducible? What about $X^{18} 36$? And $X^{18} 72$?
- 2. Let a, n be integer numbers, $n \geq 1$, and let p be a prime number, $p > |a| + 1$. Show that the polynomial

$$
X^n+aX+p
$$

is irreducible.

3. Let $n \geq 2$ be an odd integer, and let p be a prime number. Assume that all the roots of the polynomial

$$
X^n + a_{n-1}X^{n-1} + \dots + a_1X + p^2
$$

have the same absolute value. Show that the polynomial $g(X) = f(X^2)$ is irreducible.

Theorem 2.1. (Perron's criterion) Let $f = X^n + a_1X^{n-1} + \cdots + a_n$ be a polynomial with integer coefficients. If $|a_1| > 1 + |a_2| + \cdots + |a_n|$, then f is irreducible.

Quick question: is the polynomial $X^n + 5X^{n-1} + 3$ reducible?

3 What if our polynomials take lots of small values?

1. Show that if a_1, \dots, a_n are distinct integers, then the polynomial

$$
(X-a_1)\cdots(X-a_n)-1
$$

is irreducible.

2. Show that if a_1, \dots, a_n are distinct integers, then the polynomial

$$
(X-a_1)^2\cdots(X-a_n)^2+1
$$

is irreducible.

3. Let g be a polynomial of degree k with integer coefficients, and let d_1, \dots, d_k be distinct integers. Show that

$$
|g(d_i)| \ge \frac{k!}{2^k}
$$

for at least one value of $i \in \{1, \dots, k\}$. (You'll need this result for the next problem)

4. (Polya) Let f be a polynomial of degree n with integer coefficients, and set $m = |(n +$ 1)/2. Suppose there exist *n* distinct integer numbers a_1, \dots, a_n which are not roots of f , for which

$$
f(a_i) < \frac{m!}{2^m}.
$$

Prove that f is irreducible.

4 Reducing mod *p*...starting to feel the heat?

Theorem 4.1. (Eisenstein's criterion) Let p be a prime number, and $f = a_n X^n + \cdots + a_1 X + a_0$ a polynomial with integer coefficients. Assume that

- \bullet $p \nmid a_n$
- $p|a_{n-1}, p|a_{n-2}, \cdots, p|a_1, p|a_0.$
- \bullet $p^2 \nmid a_0$.

Then f is irreducible.

- 1. Show that if p is a prime number and q is not divisible by p, then $X^n pq$ is irreducible. (Can you do this without Eisentein's criterion?)
- 2. Let p be a prime number. Show that

$$
X^{p-1} + X^{p-2} + \dots + X + 1
$$

is irreducible.

3. Show that the polynomial

$$
(X^2 + X)^{2^n} + 1
$$

is irreducible.

4. Let p be a prime number, and a an integer not divisible by p . Show that the polynomial

$$
X^p - X + a
$$

is irreducible over the integers (by showing the stronger statement that it is irreducible over $\mathbb{Z}/(p)[X].$

- 5. Show that X^4+1 is irreducible in $\mathbb{Z}[X]$, but reducible in $\mathbb{Z}/(p)[X]$ for every prime number \mathcal{D} .
- 6. Is the polynomial $X^n + 5X^{n-1} + 3$ reducible? (have you seen this before?)

5 Enter the Heroes: Newton Polygons

Theorem 5.1. (Dumas) The Newton polygon of a product of polynomials is the union of the Newton polygons of the factors.

- 1. Let's try this again: show that $X^5 + 6X^4 + 6X^3 + 24X + 72$ is irreducible. Maybe try something easier before: is $X^5 + 2X^3 + 2X + 4$ irreducible?
- 2. Is the polynomial $X^n + 5X^{n-1} + 3$ reducible? (I thought we've answered this already...)
- 3. Let $n \geq 2$ be an odd integer, and let p be a prime number. Assume that all the roots of the polynomial

$$
X^{n} + a_{n-1}X^{n-1} + \cdots + a_{1}X + p^{2}
$$

have the same absolute value. Show that the polynomial $q(X) = f(X^2)$ is irreducible. (am I repeating myself?)

4. Show that the polynomial

$$
\frac{X^n}{n!} + \frac{X^{n-1}}{(n-1)!} + \dots + \frac{X}{1!} + 1
$$

is irreducible. (For those of you who know about power series, the above polynomials form, as n ranges over the natural numbers, the truncations of the power series expansion of e^X .)

6 The Masterpiece

We'll try to put together (some of) the techniques we've learnt so far to prove the irreducibility of an interesting collection of polynomials. Consider the polynomials

$$
f_n = \frac{(X+1)^n - X^n - 1}{X},
$$

for $n \geq 1$. We will show that f_{2p} is irreducible whenever p is a prime number. Note that the problem of establishing the irreducibility of f_n is NOT solved for arbitrary n , so if you wanna get rich...spiritually...you should give it a try!

Here are the steps for the irreducibility of f_{2p} :

(a) Explain why if α is a root of f_n , then so is $1/\alpha$.

(b) From here on, we assume that $n = 2p$ with p a prime number. Consider the Newton polygon of f_n with respect to the prime number p. Show that f_n is either irreducible, or it can be written as a product of two irreducible polynomials of degree $(p-1)$, $f_n = g \cdot h$.

(c) Without loss of generality, assume that q and h have positive leading coefficients. If we let $gcd(q)$ and $gcd(h)$ be the greatest common divisors of the coefficients of the two polynomials (also known as the contents of the polynomials), show that $gcd(g) = gcd(h) = 1$. Show that, under our assumption, the constant terms in q, h are positive.

(d) Show that if α is a root of g, then $1/\alpha$ is NOT a root of g.

(e) Prove that g is the reciprocal of h , i.e.

$$
g(X) = X^{n-1}h(1/X).
$$

(f) Show that the situation in (e) cannot occur, and conclude that f_n is irreducible (when $n = 2p$.