HOMEWORK 1

Obligatory exercises are 1,2 and 3.

Exercise 1. Show that $SS^k = S^{k+1}$. *Hint:* Consider the map $f: S^k \times I \to S^{k+1}$, where

$$f(x,t) = ((\sqrt{1 - (2t-1)^2})x, 2t - 1)$$

Exercise 2. Let $f: X \to Y$. Consider the mapping cylinder M_f .

- (1) Prove that the inclusion $\iota_X \colon X \hookrightarrow M_f$ is a cofibration.
- (2) Show that this gives a possibility to factor every map $f: X \to Y$ as

$$f = r \circ \iota_X$$

where ι_X is a cofibration and $r: M_f \to Y$ is a homotopy equivalence.

Exercise 3. Prove: If X is a Hausdorff space, then its diagonal

$$\Delta = \{(x, x) \in X \times X\}$$

is a closed subspace of $X \times X$.

Exercise 4. Let X be a Hausdorff space and $A \subseteq X$ be its retract. Prove that A is closed. *Hint:* Use the previous exercise and the map $X \to X \times X \colon x \mapsto (x, r(x))$ where $r \colon X \to A$ is a retraction.

Exercise 5. The consequence of the previous exercise is: If X is Hausdorff and $A \hookrightarrow X$ is a cofibration, then A is closed. *Hint:* $X \times I$ is Hausdorff.