HOMEWORK 7

Exercise 1. Let $\times: H^{*}(X) \otimes H^{*}(Y) \rightarrow H^{*}(X \times Y)$ be the cross product defined by the formula

$$
\alpha \times \beta=p_{1}^{*}(\alpha) \cup p_{2}^{*}(\beta)
$$

where $p_{1}: X \times Y \rightarrow X$ and $p_{2}: X \times Y \rightarrow Y$ are the projections on the first and the second component, respectively. Let $\Delta: X \rightarrow X \times X$ be the diagonal $\Delta(x)=(x, x)$. Prove that for $\alpha, \beta \in H^{*}(X)$

$$
\alpha \cup \beta=\Delta^{*}(\alpha \times \beta) .
$$

Exercise 2. Let $f: X \rightarrow Y$ be a constant map. Prove that $f_{*}: H_{n}(X) \rightarrow H_{n}(Y)$ and $\left.f^{*}: H^{n}(Y) \rightarrow H^{(} X\right)$ are zero maps for $n \geq 1$. (Hint: One can do it from the definition, but much easier is to factor f as a composition of suitable two maps and use the fact that H_{*} and H^{*} are a functor and a cofunctor, respectively.)

Exercise 3. Let the cohomology rings of the spaces X and Y are the following

$$
H^{*}(X) \cong \mathbb{Z}[x] /\left\langle x^{n}\right\rangle, \quad H^{*}(Y) \cong \mathbb{Z}[y] /\left\langle y^{m}\right\rangle
$$

where $x \in H^{1}(X)$ and $y \in H^{1}(Y)$. Prove that

$$
H^{*}(X \vee Y) \cong \mathbb{Z}[u, v] /\left\langle u^{n}, v^{m}, u v\right\rangle .
$$

