

Central European Institute of Technology BRNO | CZECH REPUBLIC

# Image analysis I

C9940 3-Dimensional Transmission Electron Microscopy S1007 Doing structural biology with the electron microscope

#### March 2, 2015



EUROPEAN UNION EUROPEAN REGIONAL DEVELOPMENT FUND INVESTING IN YOUR FUTURE





# Syllabus, original

| Week | Date  | Instructor             | Торіс                          |
|------|-------|------------------------|--------------------------------|
| 1    | 02/16 | D. Nemecek & T. Shaikh | Introduction/Tour/History      |
| 2    | 02/23 | D. Nemecek & T. Shaikh | Electron Optics                |
| 3    | 03/02 | D Nemecek              | Specimen preparation           |
| 4    | 03/09 | T. Shaikh              | Image analysis I               |
| 5    | 03/16 | T. Shaikh              | Image analysis II              |
| 6    | 03/23 | T. Shaikh              | 3D reconstruction              |
| 7    | 03/30 | T. Shaikh              | Single-particle reconstruction |
|      |       |                        | (Easter)                       |
| 8    | 04/13 | D. Nemecek             | Tomography I                   |
| 9    | 04/20 | D. Nemecek             | Tomography II                  |
| 10   | 04/27 | D. Nemecek             | Visualization/Segmentation     |
| 11   | 05/04 | D. Nemecek             | Hybrid methods                 |
| 12   | 05/11 | T. Shaikh              | Computer practicals            |
| 13   | 05/18 | D. Nemecek & T. Shaikh | Journal club                   |

# Syllabus, updated

| Week | Date  | Instructor             | Торіс                          |
|------|-------|------------------------|--------------------------------|
| 1    | 02/16 | D. Nemecek & T. Shaikh | Introduction/Tour/History      |
| 2    | 02/23 | D. Nemecek & T. Shaikh | Electron Optics                |
| 3    | 03/02 | T. Shaikh              | Image analysis I               |
| 4    | 03/09 | D. Nemecek             | Specimen preparation           |
| 5    | 03/16 | T. Shaikh              | Image analysis II              |
| 6    | 03/23 | T. Shaikh              | 3D reconstruction              |
| 7    | 03/30 | T. Shaikh              | Single-particle reconstruction |
|      |       |                        | (Easter)                       |
| 8    | 04/13 | D. Nemecek             | Tomography I                   |
| 9    | 04/20 | D. Nemecek             | Tomography II                  |
| 10   | 04/27 | D. Nemecek             | Visualization/Segmentation     |
| 11   | 05/04 | D. Nemecek             | Hybrid methods                 |
| 12   | 05/11 | T. Shaikh              | Computer practicals            |
| 13   | 05/18 | D. Nemecek & T. Shaikh | Journal club                   |

#### Correction/clarification from Feb. 16



# **Correction/clarification**

First Siemens microscope, 1939



http://ernst.ruska.de

First <u>commercial</u> EM, 1937 Metropolitan-Vickers EM1 (EM2 shown)



http://emu.msim.org.uk

The first commercial electron microscope was actually by the **British company Metropolitan-Vickers** in 1937. However, the magnification was worse than for the light microscope, so the Siemens is considered "first."



Metropolitan Vickers eventually became AEI, which built a 1.2 million volt EM-7.





http://www.wadsworth.org



# Outline

### Correction/clarification form Feb. 16

### Intro to image analysis

- Relationship between imaging and diffraction
- Fourier transforms
  - Theory
  - Examples in 1D
  - Examples in 2D
- Fourier filtration
- Contrast transfer function
- Resolution



# Outline

### Correction/clarification form Feb. 16

### Intro to image analysis

- Relationship between imaging and diffraction
- Fourier transforms
  - Theory
  - Examples in 1D
  - Examples in 2D
- Fourier filtration
- Contrast transfer function
- Resolution



# Relationship between imaging and diffraction



http://www.microscopy.ethz.ch



http://electron6.phys.utk.edu



http://web.utk.edu

# How do X-ray microscopes work?





# How do X-ray microscopes work?



http://ssrl.slac.stanford.edu



# Outline

### Correction/clarification form Feb. 16

### Intro to image analysis

- Relationship between imaging and diffraction
- Fourier transforms
  - Theory
  - Examples in 1D
  - Examples in 2D
- Fourier filtration
- Contrast transfer function
- Resolution



# **Fourier series**

A Fourier series is an expansion of a periodic function f(x) in terms of an infinite sum of sines and cosines

$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos(nx) + \sum_{n=1}^{\infty} b_n \sin(nx)$$



# Fourier transforms: Definition

$$F(k) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i k x} dx$$

*f*: function which we are transforming (1D)

x: axis coordinate

- *i*: √-1
- *k*: spatial frequency *F(k)*: Fourier coefficient at



# Fourier transforms: Definition

$$F(k) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i k x} dx$$

# $F(k) = a\cos(-2\pi kx) + ib\sin(-2\pi kx)$



## Fourier coefficients, discrete functions

$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos(nx) + \sum_{n=1}^{\infty} b_n \sin(nx)$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx$$
$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx$$





4.80194, -0.0982937





#### 🔓 | 🞜 🏢 🥶 😋 🔍 | 🔧 ?



A function with the same frequency but with an offset will have some components of both sine and cosine.

That is, *a* and *b* will be non-zero.



4.80194, -0.0982937



4.80194, -0.0982937

The higher the spatial frequencies (i.e., higher resolution) that are included, the more faithful the representation of the original function will be.



# Some properties

- As *n* increases, so does the spatial frequency, *i.e.*, the "resolution."
  - For example, sin(2x) oscillates faster than sin(x)
- Computation of a Fourier transform is a completely reversible operation.
  - There is no loss of information.
- Fourier terms (or coefficients) have amplitude and phase.
- The diffraction pattern is the physical manifestation of the Fourier transform
  - Phase information is lost in a diffraction pattern.
  - An image contains both phase and amplitude information.



# Some simple 1D transforms: a 1D lattice







# Some simple 1D transforms: a box



http://cnx.org



# Some simple 1D transforms: a Gaussian









http://en.labs.wikimedia.org/wiki/Basic\_Physics\_of\_Nuclear\_Medicine/Fourier\_Methods



# Some simple 2D Fourier transforms: a row of points







# Some simple 2D Fourier transforms: a 2D lattice







# Some simple 2D Fourier transforms: a sharp disc





# Some simple 2D Fourier transforms: a series of lines



#### What do we mean by spatial frequency?







<u>File Edit Analysis</u>



From Wikipedia







<u>F</u>ile <u>E</u>dit <u>A</u>nalysis



TIT







Fourier <sup>B</sup> filtration























A "low-pass" filter

# Contrast transfer function

![](_page_34_Picture_1.jpeg)

![](_page_35_Figure_0.jpeg)

# Typical amplitude contrast is estimated a 0.08-0.12 (minus noise)

![](_page_35_Picture_2.jpeg)

# Instead of amplitude contrast, we'll use phase contrast.

![](_page_36_Picture_1.jpeg)

# Phase contrast in light microscopy

Bright-field image

Phase-contrast image

![](_page_37_Picture_3.jpeg)

http://www.microbehunter.com

![](_page_37_Picture_5.jpeg)

# In EM, even with defocus, the contrast is poor.

#### *E. coli* 70S ribosomes, field width ~1440Å.

![](_page_38_Picture_2.jpeg)

Signal-to-noise ratio for cryoEM typically given to be between 0.07 and 0.10.

![](_page_38_Picture_4.jpeg)

# **Optical path**

![](_page_39_Figure_1.jpeg)

At focus, all we would see is amplitude contrast.

![](_page_39_Picture_3.jpeg)

# Optical path with defocus

![](_page_40_Figure_1.jpeg)

![](_page_40_Picture_2.jpeg)

![](_page_41_Figure_0.jpeg)

What is the path difference between the scattered and unscattered beams?

![](_page_41_Picture_2.jpeg)

# Path difference as a function of $\Delta f$

![](_page_42_Figure_1.jpeg)

![](_page_42_Picture_2.jpeg)

# Some typical values

![](_page_43_Figure_1.jpeg)

A more precise formulation of the CTF can be found in Erickson & Klug A (1970). Philosophical Transactions of the Royal Society B. 261:105.

![](_page_43_Picture_3.jpeg)

# Proper form the CTF

 $-\sin\left(\frac{\pi}{2}C_{s}k^{4}+\pi\Delta f\lambda k^{2}\right)$ 

where:

- C<sub>s</sub>: spherical aberration
- k: spatial frequency (resolution)

![](_page_44_Picture_5.jpeg)

#### How does the CTF affect an image?

![](_page_45_Picture_1.jpeg)

# original

![](_page_46_Picture_1.jpeg)

![](_page_46_Figure_2.jpeg)

![](_page_46_Picture_3.jpeg)

3

# combined

![](_page_47_Figure_1.jpeg)

![](_page_47_Picture_2.jpeg)

![](_page_47_Picture_3.jpeg)

original

# Outline

### Correction/clarification form Feb. 16

### Intro to image analysis

- Relationship between imaging and diffraction
- Fourier transforms
  - Theory
  - Examples in 1D
  - Examples in 2D
- Fourier filtration
- Contrast transfer function
- Resolution

![](_page_48_Picture_11.jpeg)

# How do we evaluate the quality of a reconstruction?

We split the data set into halves and compare them.

![](_page_49_Figure_2.jpeg)

Now, <u>how</u> do we compare the two half-set reconstructions?

![](_page_49_Picture_4.jpeg)

# Fourier Shell Correlation (FSC)

![](_page_50_Figure_1.jpeg)

**Properties:** 

- Fourier terms have amplitude + phase.
- Correlation values range from -1 to +1.
- Noise <u>should</u> give an average of 0.
- The comparison is done as a function of spatial frequency (or "resolution")

# Fourier Shell Correlation; A better example

![](_page_51_Figure_1.jpeg)

It is controversial what single number to use to describe this curve, but a common practice is to report the value where the FSC=0.5 as the nominal resolution.

# Thank you for your attention

![](_page_52_Picture_1.jpeg)

Central European Institute of Technology Masaryk University Kamenice 753/5 625 00 Brno, Czech Republic

#### www.ceitec.muni.cz | info@ceitec.muni.cz

![](_page_52_Picture_4.jpeg)

![](_page_52_Picture_5.jpeg)

EUROPEAN UNION EUROPEAN REGIONAL DEVELOPMENT FUND INVESTING IN YOUR FUTURE

![](_page_52_Picture_7.jpeg)

OP Research and Development for Innovation

![](_page_52_Picture_9.jpeg)